Kellogg VL. The net-winged midges (Blepharoceridae) of North America. Proc Calif Acad Sci. 1903;3:187–224.
Google Scholar
Kellogg VL. Notes on the life-history and structure of Blepharocera capitata Loew. Ent News. 1900;11:305–18.
Google Scholar
Komárek J. Die Morphologie und Physiologie der Haftscheiben der Blepharoceridenlarven. In: Sitzungsberichte der Königlich Böhmischen Gesellschaft der Wissenschaften II Cl; 1914. p. 1–28.
Google Scholar
Loew H. Beschreibung einiger neuer Gattungen der europäischen Dipterenfauna. Stettiner Entomol Zeitung. 1844;5:114–30 154–173, 165–168.
Google Scholar
Frutiger A, Buergisser GM. Life history variability of a grazing stream insect (Liponeura cinerascens minor; Diptera: Blephariceridae). Freshw Biol. 2002;47:1618–32.
Article
Google Scholar
Frutiger A. Walking on suckers - new insights into the locomotory behavior of larval net-winged midges (Diptera: Blephariceridae). J North Am Benthol Soc. 1998;17:104–20.
Article
Google Scholar
Hermann HR, Mullen MA, Wallace JB. Suction discs of Blepharocera separata. J Georg Entomol Soc. 1975;10:145–50.
Google Scholar
Hora SL. Ecology, bionomics and evolution of the torrential Fauna, with special reference to the organs of attachment. Philos Trans R Soc Lond B. 1930;218:171–282.
Article
Google Scholar
Frutiger A. The function of the suckers of larval net-winged midges (Diptera: Blephariceridae). Freshw Biol. 2002;47:293–302.
Article
Google Scholar
Federle W, Rohrseitz K, Hölldobler B. Attachment forces of ants measured with a centrifuge: better “wax-runners” have a poorer attachment to a smooth surface. J Exp Biol. 2000;203:505–12.
CAS
PubMed
Google Scholar
Gorb S, Gorb E, Kastner V. Scale effects on the attachment pads and friction forces in syrphid flies (Diptera, Syrphidae). J Exp Biol. 2001;204:1421–31.
CAS
PubMed
Google Scholar
Frutiger A, Jolidon C. Bestimmungsschüssel für die Larven und Puppen der in der Schweiz, in Österreich und in Deutschland vorkommenden Netzflügelmücken (Diptera, Blephariceridae), mit Hinweisen zu ihrer Verbreitung und Phänologie. Bull Soc Ent Suisse. 2000;73:93–108.
Google Scholar
Frutiger A, Gammeter S. Faunistics and altitudinal distribution of net-winged midges (Diptera: Blephariceridae) in Switzerland and Liechtenstein. Mitteilungen der Schweizerischen Entomol Gesellschaft. 1998;71:115–24.
Google Scholar
Tonnoir AL. Notes on Indian Blepharocerid larvae and pupae with remarks on the morphology of Blepharocerid larvae and pupae in general. Rec Indian Museum. 1930;32:161–24.
Google Scholar
Campbell JW. Notes on the Blepharoceridae (Diptera) of New Zealand. NZ Inst Trans Proc. 1920;53:258–88.
Google Scholar
Craig DA. The biology of some New Zealand Blepharoceridae ( Diptera: Nematocera); 1966.
Google Scholar
Mannheims BJ. Beiträge zur Biologie und Morphologie der Blepharoceriden (Dipt.). Zool Forschungen; 1935. p. 1–115.
Google Scholar
Bischoff W. Die Ökologie der paläarktischen Blepharoceridae. Ergebnisse und Fortschritte der Zool. 1928;7:209–78.
Google Scholar
Rietschel P. Bau, Funktion und Entwicklung der Haftorgane der Blepharoceridae. Z Morph Ökol Tiere. 1961;50:239–65.
Article
Google Scholar
Ditsche P, Summers AP. Aquatic versus terrestrial attachment: water makes a difference. Beilstein J Nanotechnol. 2014;5:2424–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ditsche P, Michels J, Kovalev A, Koop J, Gorb S. More than just slippery : the impact of biofilm on the attachment of non-sessile freshwater mayfly larvae. J R Soc Interface. 2014;11:20130989.
Article
PubMed
PubMed Central
Google Scholar
Smith AM. Cephalopod sucker design and the physical limits to negative pressure. J Exp Biol. 1996;199:949–58.
CAS
PubMed
Google Scholar
Hofeneder K. Über die Larven der Blepharoceriden und ihren merkwürdigen Anheftungsapparat. Verhandlungen der Zool Gesellschaft Wien. 1927;77:82–98.
Google Scholar
Bandyopadhyay PR, Hrubes JD, Leinhos HA. Biorobotic adhesion in water using suction cups. Bioinspir Biomim. 2008;3:016003.
Article
PubMed
Google Scholar
Baik S, Kim DW, Park Y, Lee T-JJ, Bhang SH, Pang C, et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature. 2017;546:396–400.
Article
CAS
PubMed
Google Scholar
Tramacere F, Follador M, Pugno NM, Mazzolai B. Octopus-like suction cups: from natural to artificial solutions. Bioinspir Biomim. 2015;10:035004.
Article
CAS
PubMed
Google Scholar
Wang Y, Yang X, Chen Y, Wainwright DK, Kenaley CP, Gong Z, et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Sci Robot. 2017;2:1–10.
Article
CAS
Google Scholar
Sareh S, Althoefer K, Li M, Noh Y, Tramacere F, Sareh P, et al. Anchoring like octopus: biologically inspired soft artificial sucker. J R Soc Interface. 2017;14:20170395.
Article
PubMed
PubMed Central
Google Scholar
Bing-Shan H, Li-Wen W, Zhuang F, Yan-Zheng Z, Hu B, Wang L-W, et al. Bio-inspired miniature suction cups actuated by shape memory alloy. Int J Adv Robot Syst. 2009;6:151–60.
Article
Google Scholar
Chen Y, Shih M, Wu M, Yang E, Chi K. Underwater attachment using hairs: the functioning of spatula and sucker setae from male diving beetles. J R Soc Interface. 2014;11:20140273.
Article
PubMed
PubMed Central
Google Scholar
Karlsson Green K, Kovalev A, Svensson EI, Gorb SNSN. Male clasping ability, female polymorphism and sexual conflict: fine-scale elytral morphology as a sexually antagonistic adaptation in female diving beetles. J R Soc Interface. 2013;10:20130409.
Article
PubMed
PubMed Central
Google Scholar
Kampowski T, Eberhard L, Gallenmüller F, Speck T, Poppinga S. Functional morphology of suction discs and attachment performance of the Mediterranean medicinal leech (Hirudo verbana Carena). J R Soc Interface. 2016;13:20160096.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kier WM, Smith AM. The morphology and mechanics of octopus suckers. Biol Bull. 1990;178:126–36.
Article
CAS
PubMed
Google Scholar
Fulcher BA, Motta PJ. Suction disk performance of echeneid fishes. Can J Zool. 2006;84:42–50.
Article
Google Scholar
Wainwright DK, Kleinteich T, Kleinteich A, Gorb SN, Summers AP. Stick tight: suction adhesion on irregular surfaces in the northern clingfish. Biol Lett. 2013;9:20130234.
Article
PubMed
PubMed Central
Google Scholar
Ditsche P, Wainwright DK, Summers AP. Attachment to challenging substrates - fouling, roughness and limits of adhesion in the northern clingfish (Gobiesox maeandricus). J Exp Biol. 2014;217:2548–54.
Article
PubMed
Google Scholar
Beckert M, Flammang BE, Nadler JH. Remora fish suction pad attachment is enhanced by spinule friction. J Exp Biol. 2015;218:3551–8.
Article
PubMed
Google Scholar
Majidi CS, Groff RE, Fearing RS. Attachment of fiber array adhesive through side contact. J Appl Phys. 2005;98:103521.
Article
CAS
Google Scholar
Lee DH, Kim Y, Fearing RS, Maboudian R. Effect of fiber geometry on macroscale friction of ordered low-density polyethylene nanofiber arrays. Langmuir. 2011;27:11008–16.
Article
CAS
PubMed
Google Scholar
Labonte D, Williams JA, Federle W. Surface contact and design of fibrillar “friction pads” in stick insects (Carausius morosus): mechanisms for large friction coefficients and negligible adhesion. J R Soc Interface. 2014;11:20140034.
Article
PubMed
PubMed Central
Google Scholar
Lin AYM, Brunner R, Chen PY, Talke FE, Meyers MA. Underwater adhesion of abalone: the role of van der Waals and capillary forces. Acta Mater. 2009;57:4178–85.
Article
CAS
Google Scholar
Gronenberg W, Paul J, Just S, Hölldobler B. Mandible muscle fibers in ants: fast or powerful? Cell Tissue Res. 1997;289:347–61.
Article
CAS
PubMed
Google Scholar
Maie T, Schoenfuss HL, Blob RW. Performance and scaling of a novel locomotor structure: adhesive capacity of climbing gobiid fishes. J Exp Biol. 2012;215:3925–36.
Article
PubMed
Google Scholar
Sacks MS, Merryman WD, Schmidt DE. On the biomechanics of heart valve function. J Biomech Elsevier. 2009;42:1804–24.
Article
Google Scholar
Lam JHC, Ranganathan N, Wigle ED, Silver MD. Morphology of the human mitral valve: I. Chordae Tendineae: A New Classification. Circulation. 1970;41:449–58.
Article
CAS
PubMed
Google Scholar
Zwick P. The net-winged midges of Italy and Corsica (Diptera: Blephariceridae). Aquat Insects. 1980;2:33–61.
Article
Google Scholar
Dirks JH, Li M, Kabla A, Federle W. In vivo dynamics of the internal fibrous structure in smooth adhesive pads of insects. Acta Biomater Acta Materialia Inc. 2012;8:2730–6.
Article
PubMed
Google Scholar
Federle W, Barnes WJP, Baumgartner W, Drechsler P, Smith JM. Wet but not slippery: boundary friction in tree frog adhesive toe pads. J R Soc Interface. 2006;3:689–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
Article
CAS
PubMed
Google Scholar
Limaye A. Drishti: a volume exploration and presentation tool. Proc SPIE 8506; 2012. p. 85060X. 8506–9
Google Scholar
Cecilia A, Rack A, Douissard P-A, Martin T, dos Santos RT, Vagovič P, et al. LPE grown LSO:Tb scintillator films for high-resolution X-ray imaging applications at synchrotron light sources. Nucl Inst Methods Phys Res Sect A Accel Spectr Detect Assoc Equip. 2011;648:S321–3 North-Holland.
Article
CAS
Google Scholar
dos Santos RT, Ershov A, van de Kamp T, Baumbach T. In vivo X-ray cine-tomography for tracking morphological dynamics. Proc Natl Acad Sci. 2014;111:3921–6.
Article
CAS
Google Scholar
Vogelgesang M, Farago T, Morgeneyer TF, Helfen L, dos Santos RT, Myagotin A, et al. Real-time image-content-based beamline control for smart 4D X-ray imaging. J Synchrotron Radiat. 2016;23:1254–63.
Article
PubMed
Google Scholar
Harrington BJ, Hageage GJ, Abmm D. Calcofluor white: a review of its uses and applications in clinical mycology and parasitology. Lab Med. 2003;34:361–7.
Article
Google Scholar
Michels J. Assessment of Congo red as a fluorescence marker for the exoskeleton of small crustaceans and the cuticle of polychaetes. J Microsc. 2010;238:95–101.
Article
CAS
PubMed
Google Scholar