Casacci LP, Barbero F, Balletto E. The “Evolutionarily Significant Unit” concept and its applicability in biological conservation. Ital J Zool. 2014;81(2):182–93. https://doi.org/10.1080/11250003.2013.870240.
Article
Google Scholar
Giménez J, Louis M, Barón E, Ramírez F, Verborgh P, Gauffier P, et al. Towards the identification of ecological management units: A multidisciplinary approach for the effective management of bottlenose dolphins in the southern Iberian Peninsula Aquatic Conserv. Mar Freshw Ecosyst. 2018;28:205–15.
Fraser DJ, Bernatchez L. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol. 2001;10(12):2741–52.
Article
CAS
Google Scholar
Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. Trends Ecol Evol. 2012;27(9):489–96. https://doi.org/10.1016/j.tree.2012.05.012.
Article
PubMed
PubMed Central
Google Scholar
Ryder OA. Species conservation and systematics: the dilemma of subspecies. Trends in Ecology and Evolution. 1986;1(1):9–10. https://doi.org/10.1016/0169-5347(86)90059-5.
Article
Google Scholar
Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK. Considering evolutionary processes in conservation biology. Trends Ecol Evol. 2000;17:390Ð395.
Google Scholar
de Guia APO, Saitoh T. The gap between the concept and definitions in the evolutionarily significant unit: the need to integrate neutral genetic variation and adaptive variation. Ecol Res. 2007;22(4):604–12. https://doi.org/10.1007/s11284-006-0059-z.
Article
Google Scholar
Wilkins MR, Seddon N, Safran RJ. Evolutionary divergence in acoustic signals: causes and consequences. TREE. 2013;28(3):156–66. https://doi.org/10.1016/j.tree.2012.10.002.
Article
PubMed
Google Scholar
Van Schaik CP. The costs and benefits of flexibility as an expression of behavioural plasticity: a primate perspective. Phil Trans R Soc B. 2013;368(1618):20120339. https://doi.org/10.1098/rstb.2012.0339.
Article
PubMed
PubMed Central
Google Scholar
Kamilar JM, Cooper N. Phylogenetic signal in primate behaviour, ecology, and life history. Phil Trans R Soc B. 2013;368:20120341.
Article
Google Scholar
Kessler SE, Radespiel U, Hasiniaina AIF, Leliveld LMC, Nash LT, Zimmermann E. Modeling the origins of mammalian sociality: moderate evidence for matrilineal signatures in mouse lemur vocalizations. Front Zool. 2014;11(1):14. https://doi.org/10.1186/1742-9994-11-14.
Article
PubMed
PubMed Central
Google Scholar
Gerhardt CH. Female mate choice in treefrogs: static and dynamic acoustic criteria. Anim Behav. 1991;42:615–35.
Article
Google Scholar
Ryan MJ, Cocroft RB, Wilczynski W. The role of environmental selection in intraspecific divergence in mate recognition signals in the cricket frog. Acris crepitans Evol. 1990;44(7):1869–72. https://doi.org/10.1111/j.1558-5646.1990.tb05256.x.
Castellano S, Tontini L, Giacoma C, Lattes A, Balletto E. The evolution of release and advertisement calls in green toads (Bufoviridis complex). Biol J Linn Soc. 2002;77(3):379–91. https://doi.org/10.1046/j.1095-8312.2002.00118.x.
Article
Google Scholar
Sanvito S, Galimberti F, Miller ED. Development of aggressive vocalizations in male southern elephant seals (Mirounga leonina): maturation or learning? Behaviour. 2008;145:137–70.
Article
Google Scholar
Romer H. Environmental and biological constraints for the evolution of long-range signalling and hearing in acoustic insects. Phil Trans R Soc Lond B. 1993;340:179–85.
Article
Google Scholar
Giacoma C, Castellano S. Advertisement call variation and speciation in the Bufoviridis complex. In: Ryan MJ, editor. Anuran communication. Washington and London: Smithsonian Institution Press; 2001. p. 205–19.
Google Scholar
Gish SL, Morton ES. Structural adaptations to local habitat acoustics in Carolina wren songs. Z Tierpsychol. 1981;56:74–84.
Article
Google Scholar
Brumm H, Naguib M. Environmental acoustics and the evolution of bird song. Adv Study Behav. 2009;40:1–33.
Article
Google Scholar
Brown CH, Waser PM. Environmental influences on the structure of primate vocalizations. In: Todt D, Goedeking P, Symmes D, editors. Primate Vocal Communication. Berlin: Springer-Verlag; 1988. p. 51–66. https://doi.org/10.1007/978-3-642-73769-5_4.
Chapter
Google Scholar
Brown CH, Gomez R, Waser PM. Old world monkey vocalizations: adaptation to the local habitat? Anim Behav. 1995;50:945–61.
Article
Google Scholar
Maretti G, Sorrentino V, Finomana A, Gamba M, Giacoma C. Not just a pretty song: an overview of the vocal repertoire of Indri indri. J Anthropol Sci. 2010;88:151–65.
PubMed
Google Scholar
Au WWL, Floyd WR, Haun JE. Propagation of Atlantic bottlenose dolphin echolocation signals. J Acoustic Soc Am. 1978;64(2):411–22. https://doi.org/10.1121/1.382015.
Article
Google Scholar
Papale E, Gamba M, Perez-Gil M, Martin VM, Giacoma C. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise. PLoS ONE. 2015;10(4):e0121711. https://doi.org/10.1371/journal.pone.0121711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitehead H. Gene–culture coevolution in whales and dolphins 2017PNAS 114 : 7814–7821.
May-Collado LJ, Agnarsson I, Wartzok D. Reexamining the relationship between body size and tonal signals frequency in whales: a phylogenetic comparative approach. Mar Mam Sci. 2007;23(3):524–52. https://doi.org/10.1111/j.1748-7692.2007.02250.x.
Article
Google Scholar
Thinh VN, Hallam C, Roos C, Hammerschmidt K. Concordance between vocal and genetic diversityin crested gibbons. BMC Evol Biol. 2011;11:1–9.
Article
Google Scholar
Ruppell J. Vocal diversity and taxonomy of white-cheeked crested gibbons. J Acoust Soc Am. 2014;135(4):2239. https://doi.org/10.1121/1.4877326.
Article
Google Scholar
Campbell P, Pasch B, Pino JL, Crino OL, Phillips M, Phelps SM. Geographic variation in the songs of Neotropical singing mice: testing the relative importance of drift and local adaptation. Evolution. 2010;64(7):1955–72. https://doi.org/10.1111/j.1558-5646.2010.00962.x.
Article
PubMed
Google Scholar
Pasch B, Campbell P, Abbasi MZ, Wilson PS, Phelps SM, Ryan MJ. Sources of acoustic variation in the advertisement vocalizations of Neotropical singing mice. J Acoust Soc Am. 2014;135(4):2239. https://doi.org/10.1121/1.4877325.
Article
Google Scholar
Tobias JA, Seddon N, Spottiswoode CN, Pilgrim JD, Fishpool LD, Collar NJ. Quantitative criteria for species delimitation. Ibis. 2010;152(4):724–46. https://doi.org/10.1111/J.1474-919x.2010.01051.X.
Article
Google Scholar
Marler P. A comparative approach to vocal learning: song development in white-crowned sparrows. J Comp Physiol Psychol Monograph. 1970;71:1–25.
Article
Google Scholar
Kluender KR, Diehl RL, Killeen PR. Japanese quail can learn phonetic categories. Science. 1987;237(4819):1195–7. https://doi.org/10.1126/science.3629235.
Article
CAS
PubMed
Google Scholar
Beecher MD, Campbell SE, Stoddard PK. Correlation of song learning and territory establishment strategies in the song sparrow. ProcNatlAcad Sci USA. 1994;91(4):1450–4. https://doi.org/10.1073/pnas.91.4.1450.
Article
CAS
Google Scholar
Salinas-Melgoza A, Wright TF. Evidence for vocal learning and limited dispersal as dual mechanisms for dialect maintenance in a parrot. PLoS One. 2012;7(11):e48667. https://doi.org/10.1371/journal.pone.0048667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tyack PL, Sayigh LS. Vocal learning in cetaceans. In: Snowdon CT, Hausberger M, editors. Social influences on vocal development. Cambridge University Press: Cambridge; 1997. p. 208–33. https://doi.org/10.1017/CBO9780511758843.011.
Chapter
Google Scholar
Janik VM, Slater PJB. The different roles of social learning in vocal communication. Anim Behav. 2000;60:1–11.
Article
CAS
Google Scholar
Janik VM. Acoustic communication in delphinids. Adv Study Behav. 2009;40:123–57. https://doi.org/10.1016/S0065-3454(09)40004-4.
Article
Google Scholar
Hawkins ER. Geographic variations in the whistles of bottlenose dolphins (Tursiops aduncus) along the east and west coasts of Australia. J Acoust Soc Am. 2010;128(2):924–35. https://doi.org/10.1121/1.3459837.
Article
CAS
PubMed
Google Scholar
Azzolin M, Papale E, Lammers MO, Gannier A, Giacoma C. Geographic variation of whistles of striped dolphin (Stenellacoeruleoalba) within the Mediterranean Sea. J Acoust Soc Am. 2013;134:694–705.
Article
Google Scholar
Papale E, Azzolin M, Cascão I, Gannier A, Lammers MO, Martin VM, Oswald J, Perez-Gil M, Prieto R, Silva MA, Giacoma C. Acoustic divergence between bottlenose dolphin whistles from the Central-Eastern North Atlantic and Mediterranean Sea. Acta Ethol. 2013a;DOI https://doi.org/10.1007/s10211-013-0172-2.
Papale E, Azzolin M, Cascão I, Gannier A, Lammers MO, Martin VM, et al. Geographic variability in the acoustic parameters of striped dolphin’s (Stenella coeruleoalba) whistles. J Acoust Soc Am. 2013b;133(2):1126–34.
Papale E, Azzolin M, Cascão I, Gannier A, Lammers MO, Martin VM, et al. Macro and micro geographic variation of short-beaked common dolphin’s (Delphinus delphis) whistles in the Mediterranean Sea and Atlantic Ocean. Ethol Ecol Evol. 2013c;26(4):392–404. https://doi.org/10.1080/03949370.2013.851122.
Article
Google Scholar
La Manna G, Rako-Gospić N, Sarà G, Gatti F, Bonizzoni S, Ceccherelli G. Whistle variation in Mediterranean common bottlenose dolphin: the role of geographical, anthropogenic, social, and behavioral factors. Ecology and Evolution. 2020;10(4):1971–87. https://doi.org/10.1002/ece3.6029.
Article
PubMed
PubMed Central
Google Scholar
Papale E, Perez-Gil M, Castrillon J, Perez-Gil E, Ruiz L, Servidio A, et al. Context specificity of Atlantic spotted dolphin acoustic signals in the Canary Islands. Ethology Ecology & Evolution. 2017;29(4):311–29. https://doi.org/10.1080/03949370.2016.1171256.
Article
Google Scholar
Fripp D, Owen C, Quintana-Rizzo E, Shapiro A, Buckstaff K, Jankowski K, et al. Bottlenose dolphin (Tursiops truncatus) calves appear to model their signature whistles on the signature whistles of community members. Anim Cogn. 2005;8(1):17–26. https://doi.org/10.1007/s10071-004-0225-z.
Article
PubMed
Google Scholar
Terry AMR, Peake TM, McGregor PK. The role of vocal individuality in conservation. Front Zool. 2005;2(1):10. https://doi.org/10.1186/1742-9994-2-10.
Article
PubMed
PubMed Central
Google Scholar
Matthews JN, Rendell LE, Gordon JCD, MacDonald DW. A review of frequency and time parameters of cetacean tonal calls. Bioacoustics. 1999;10(1):47–71. https://doi.org/10.1080/09524622.1999.9753418.
Article
Google Scholar
Van Cise AM, Roch MA, Baird RW, Mooney AT, Barlow J. Acoustic differentiation of Shiho- and Naisa-type short-finned pilot whales in the Pacific Ocean. J Acoust Soc Am. 2017;141:737–48. https://doi.org/10.1121/1.4974858.
Article
PubMed
Google Scholar
Dizon AE, Lockyer C, Perrin WF, Demaster DP, Sisson J. Rethinking the stock concept: a phylogeographic approach. Conserv Biol. 1992;6(1):24–36. https://doi.org/10.1046/j.1523-1739.1992.610024.x.
Article
Google Scholar
La Manna G, Rako-Gospić N, Manghi M, Picciulin M, Sarà G. Assessing geographical variation on whistle acoustic structure of three Mediterranean populations of common bottlenose dolphin (Tursiops truncatus). Behaviour. 2017;154:583–607.
Article
Google Scholar
Moura AE, Shreves K, Pilot M, Andrews KR, Moore DM, Kishida T, et al. Phylogenomics of the genus Tursiops and closely related Delphininae reveals extensive reticulation among lineages and provides inference about eco-evolutionary drivers. Mol Phylogenet Evol. 2020;146:106756. https://doi.org/10.1016/j.ympev.2020.106756.
Fernandez RM, Santos B, Pierce GJ, Llavona A, Lopez A, Silva MA, et al. Fine-scale genetic structure of bottlenose dolphins, Tursiopstruncatus, in Atlantic coastal waters of the Iberian Peninsula. Hydrobiologia. 2011;670(1):111–25. https://doi.org/10.1007/s10750-011-0669-5.
Natoli A, Birkun A, Aguilar A, Lopez A, Hoelzel AR. Habitat structure and the dispersal of male and female bottlenose dolphins (Tursiops truncatus). ProcBiol Sci. 2005;272(1569):1217–26. https://doi.org/10.1098/rspb.2005.3076.
Article
CAS
Google Scholar
Quérouil S, Freitas L, Cascão I, Alves F, Dinis A, Almeida JR, et al. Molecular insight on the population structure of common and spotted dolphins inhabiting the pelagic waters of the Northeast Atlantic. Mar Biol. 2010;157(11):2567–80. https://doi.org/10.1007/s00227-010-1519-0.
Natoli A, Cañadas A, Vaquero C, Politi E, Fernandez-Navarro P, Hoelzel AR. Conservation genetics of the short-beaked common dolphin (Delphinus delphis) in the Mediterranean Sea and in the eastern North Atlantic Ocean. Conserv Genet. 2008;9(6):1479–87. https://doi.org/10.1007/s10592-007-9481-1.
Article
Google Scholar
García-Martínez J, Moya A, Raga JA, Latorre A. Genetic differentiation in the striped dolphin Stenella coeruleoalba from European waters according to mitochondrial DNA (mtDNA) restriction analysis. Mol Ecol. 1999;8(6):1069–73. https://doi.org/10.1046/j.1365-294x.1999.00672.x.
Article
PubMed
Google Scholar
Bourret VJR, Macé MRJM, Crouau-Roy B. Genetic variation and population structure of western Mediterranean and northern Atlantic Stenella coeruleoalba populations inferred from microsatellite data. J Mar Biol Ass UK. 2007;87(1):265–9. https://doi.org/10.1017/S0025315407054859.
Article
CAS
Google Scholar
Valsecchi E, Amos W, Raga JA, Podestà M, Sherwin W. The effects of inbreeding on mortality during a morbillivirus outbreak in the Mediterranean striped dolphins (Stenellacoeruleoalba). Anim Conserv. 2004;7:139–46.
Article
Google Scholar
Cañadas A, Sagarminaga R, Garìa-Tiscar S. Cetacean distribution related with depth and slope in the Mediterranean waters off southern Spain. Deep-Sea Res I. 2002;49(11):2053–73. https://doi.org/10.1016/S0967-0637(02)00123-1.
Article
Google Scholar
Louis M, Viricel A, Lucas T, Peltier H, Alfonsi E, Berrow S, et al. Habitat-driven population structure of bottlenose dolphins, Tursiops truncatus, in the north-East Atlantic. Mol Ecol. 2014;23(4):857–74. https://doi.org/10.1111/mec.12653.
Silva MA, Prieto R, Magalhães S, Seabra MI, Santos RS, Hammond PS. Ranging patterns of bottlenose dolphins living in oceanic waters: implications for population structure. Mar Biol. 2008;156(2):179–92. https://doi.org/10.1007/s00227-008-1075-z.
Article
Google Scholar
Moore DM. An investigation into the environmental drivers of evolution in marine predators. 2020. A thesis presented for the degree of doctor of philosophy, Department of Biosciences, Durham University.
Natoli A, Moura A, Hoelzel AR. Conservation genetics of the short-beaked common dolphin (Delphinus delphis) in the Mediterranean Sea: state of the art and future research. In: Report of the 1st International Workshop Conservation and research networking on short-beaked common dolphin (Delphinus delphis) in the Mediterranean Sea. Ischia Island, Italy. 13–15 April 2016.
García-Martínez J, Barrio E, Raga JA, Latorre A. Mitochondrial DNA variability of striped dolphins (Stenella coeruleoalba) in Mediterranean Spanish waters. Mar Mamm Sci. 1995;11(2):183–99. https://doi.org/10.1111/j.1748-7692.1995.tb00517.x.
Article
Google Scholar
Quérouil S, Silva MA, Cascão I, Magalhaes S, Seabra MI, Machete MA, et al. Why do dolphins form mixed-species associations in the Azores? Ethology. 2008;114(12):1183–94. https://doi.org/10.1111/j.1439-0310.2008.01570.x.
Ritter F. 21 cetacean species of La Gomera (Canary Islands): possible reasons for an extraordinary species diversity. In: Evans PGH, et al., editors. European research on cetaceans 15, proceedings of the 15th annual conference of the European cetacean society, Rome. Oxford: European Cetacean Society; 2001.
Google Scholar
Gaspari F, Azzellino A, Airoldi S, Hoelzel AR. Social kin associations and genetic structuring of striped dolphin populations (Stenella coeruleoalba) in the Mediterranean Sea. Mol Ecol. 2007;16(14):2922–33. https://doi.org/10.1111/j.1365-294X.2007.03295.x.
Article
PubMed
Google Scholar
Caldeira RMA, Reis JC. The Azores confluence zone. Front Mar Sci. 2017;4:37.
Article
Google Scholar
Mason E, Colas F, Molemaker J, Shchepetkin AF, Troupin C, McWilliams JC, et al. Seasonal variability of the canary current: a numerical study. J Geophys Res. 2011;116:C06001.
Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben RaisLasram F, et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One. 2010;5(8):e11842. https://doi.org/10.1371/journal.pone.0011842.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tintoré J, La Violette PE, Blade I, Cruzado A. A study of an intense density front in the eastern Alboran Sea: the Almerian-Alboranfront. J Phys Oceanogr. 1988;18(10):1384–97. https://doi.org/10.1175/1520-0485(1988)018<1384:ASOAID>2.0.CO;2.
Article
Google Scholar
Aulicino G, Cotroneo Y, Ruiz S, Sánchez Román A, Pascual A, Fusco G, et al. Monitoring the Algerian Basin through glider observations, satellite altimetry and numerical simulations along a SARAL/AltiKa track. J Mar Syst. 2018;179:55–71. https://doi.org/10.1016/j.jmarsys.2017.11.006.
Casella E, Tepsich P, Couvelard X, Caldeira RMA, Schroeder K. Ecosystem dynamics in the Liguro-Provençal Basin: the role of eddies in the biological production. Mediterr Mar Sci. 2014;15(2):274–86. https://doi.org/10.12681/mms.520.
Article
Google Scholar
Vetrano A, Napolitano E, Iacono R, Schroeder K. Gasparini GP Tyrrhenian Sea circulation and water mass fluxes in spring 2004: observations and model results. J Geophys Res. 2010;115:C06023.
Google Scholar
Vassallo P, Paoli C, Alessi J, Mandich A, Wurtz M, Fiori C. Seamounts as hot-spots of large pelagic aggregations. Mediterr Mar Sci. 2018;19(3):444–58. https://doi.org/10.12681/mms.15546.
Article
Google Scholar
Connor RC, Wells RS, Mann J, Read AJ. The bottlenose dolphin. In: Mann J, Connor RC, Tyack PL, Whitehead H, editors. Cetacean Societies. Field studies of dolphins and whales. Chicago: University of Chicago Press; 2000. p. 91–125.
Google Scholar
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.1023/A:1010933404324.
Article
Google Scholar
Parisi I, De Vincenzi G, Torri M, Papale E, Mazzola S, Bonanno A, et al. Underwater vocal complexity of Arctic seal Erignathus barbatus in Kongsfjorden (Svalbard). J Acoust Soc Am. 2017;142(5):3104–15. https://doi.org/10.1121/1.5010887.
Cuttitta A, Torri M, Zarrad R, Zgozi S, Jarboui O, Quinci EM, et al. Linking surface hydrodynamics to planktonic ecosystem: the case study of the ichthyoplanktonic assemblages in the Central Mediterranean Sea. Hydrobiologia. 2018;821(1):191–214. https://doi.org/10.1007/s10750-017-3483-x.
Cuttitta A, Bonomo S, Zgozi S, Bonanno A, Patti B, Quinci EM, et al. The influence of physical and biological processes on the ichthyoplankton communities in the Gulf of Sirte (southern Mediterranean Sea). Mar Ecol. 2016;37(4):831–44. https://doi.org/10.1111/maec.12362.
Tiedemann M, Fock HO, Döring J, Badji LB, Möllmann C. Water masses and oceanic eddy regulation of larval fish assemblages along the Cape Verde frontal zone. J Mar Syst. 2018;183:42–55. https://doi.org/10.1016/j.jmarsys.2018.03.004.
Article
Google Scholar
Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40. https://doi.org/10.1007/BF00058655.
Article
Google Scholar
Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
Google Scholar
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57. https://doi.org/10.1613/jair.953.
Article
Google Scholar
Fernández A, Garcia S, Herrera F, Chawla NV. SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J Artif Intell Res. 2018;61:863–905. https://doi.org/10.1613/jair.1.11192.
Article
Google Scholar
Branco P, Ribeiro RP, Torgo L. UBL: an R package for utility-based learning, CoRR2016; abs/1604.08079 [cs.MS], URL: http://arxiv.org/abs/1604.08079
Samarra FIP, Miller PJO, Deecke VB, Simonis AE. Geographic variation in the time-frequency characteristics of high-frequency whistle sproduced by killer whales (Orcinus orca). Mar Mamm Sci. 2014;31:688–706.
Article
Google Scholar
Delarue J, Todd SK, Van Parijs SM, Di Iorio L. Geographic variation in Northwest Atlantic fin whale (Balaenoptera physalus) song: implications for stock structure assessment. J Acoust Soc Am. 2009;125(3):1774–82. https://doi.org/10.1121/1.3068454.
Article
PubMed
Google Scholar
Rendell L, Mesnick SL, Dalebout ML, Burtenshaw J, Whitehead H. Can genetic differences explain vocal dialect variation in sperm whales, Physeter macrocephalus? Behav Genet. 2011;42:332–43.
Article
Google Scholar
Gridley T, Elwen SH, Rashley G, Badenas Krakauer A, Heiler J. Bottlenose dolphins change their whistling characteristics in relation to vessel presence, surface behavior and group composition. Acoust Soc Am. 2017;27:010030.
Google Scholar
Brakes P, Carroll EL, Dall SRX, Keith SA, McGregor PK, Mesnick SL, et al. A deepening understanding of animal culture suggests lessons for conservation. Proc Biol Sci. 2021;288:20202718.
Fouda L, Wingfield JE, Fandel AD, Garrod A, Hodge KB, Rice AN, et al. Dolphins simplify their vocal calls in response to increased ambient noise. Biol Lett. 2018;14(10):20180484. https://doi.org/10.1098/rsbl.2018.0484.