Clark NJ, Clegg SM, Klaassen M. Migration strategy and pathogen risk: non-breeding distribution drives malaria prevalence in migratory waders. Oikos. 2016;125(9):1358–68. https://doi.org/10.1111/oik.03220 .
Article
Google Scholar
Valkiūnas G. Avian malaria parasites and other haemosporidia. Boca Raton: CRC Press; 2005.
Google Scholar
Schoenle LA, Kernbach M, Haussmann MF, Bonier F, Moore IT. An experimental test of the physiological consequences of avian malaria infection. J Anim Ecol. 2017;86(6):1483–96. https://doi.org/10.1111/1365-2656.12753 .
Article
PubMed
Google Scholar
Hahn S, Bauer S, Dimitrov D, Emmenegger T, Ivanova K, Zehtindjiev P, et al. Low intensity blood parasite infections do not reduce the aerobic performance of migratory birds. Proc R Soc B Biol Sci. 2018;285(1871):20172307. https://doi.org/10.1098/rspb.2017.2307 .
Article
CAS
Google Scholar
Bauer S, Hoye BJ. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science. 2014;344(6179):1242552. https://doi.org/10.1126/science.1242552 .
Article
CAS
PubMed
Google Scholar
Gow EA, Burke L, Winkler DW, Knight SM, Bradley DW, Clark RG, et al. A range-wide domino effect and resetting of the annual cycle in a migratory songbird. Proc R Soc B Biol Sci. 2019;286(1894):20181916. https://doi.org/10.1098/rspb.2018.1916 .
Article
Google Scholar
Hahn S, Amrhein V, Zehtindijev P, Liechti F. Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird. Oecologia. 2013;173(4):1217–25. https://doi.org/10.1007/s00442-013-2726-4 .
Article
PubMed
Google Scholar
Hobson KA, Kardynal KJ, Van Wilgenburg SL, Albrecht G, Salvadori A, Cadman MD, et al. A continent-wide migratory divide in north American breeding barn swallows (Hirundo rustica). PLoS One. 2015;10(6):e0129340. https://doi.org/10.1371/journal.pone.0129340 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT. Links between worlds: unraveling migratory connectivity. Trends Ecol Evol. 2002;17(2):76–83. https://doi.org/10.1016/S0169-5347(01)02380-1 .
Article
Google Scholar
Bauer S, Lisovski S, Hahn S. Timing is crucial for consequences of migratory connectivity. Oikos. 2016;125(5):605–12. https://doi.org/10.1111/oik.02706 .
Article
Google Scholar
Marzal A, Ricklefs RE, Valkiūnas G, Albayrak T, Arriero E, Bonneaud C, et al. Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS One. 2011;6(7):e21905. https://doi.org/10.1371/journal.pone.0021905 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Martínez-de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E, et al. The blood parasite Haemoproteus reduces survival in a wild bird: a medication experiment. Biol Lett. 2010;6:663–5. https://doi.org/10.1098/rsbl.2010.0046 .
Article
Google Scholar
Marzal A, De Lope F, Navarro C, Møller AP. Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia. 2005;142(4):541–5. https://doi.org/10.1007/s00442-004-1757-2 .
Article
PubMed
Google Scholar
O’Connor EA, Cornwallis CK, Hasselquist D, Nilsson JÅ, Westerdahl H. The evolution of immunity in relation to colonization and migration. Nat Ecol Evol. 2018;2(5):841–9. https://doi.org/10.1038/s41559-018-0509-3 .
Article
PubMed
Google Scholar
Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Škorpilová J, et al. The decline of afro-Palaearctic migrants and an assessment of potential causes. Ibis. 2014;156(1):1–22. https://doi.org/10.1111/ibi.12118 .
Article
Google Scholar
Gilroy JJ, Gill JA, Butchart SHM, Jones VR, Franco AMA. Migratory diversity predicts population declines in birds. Ecol Lett. 2016;19(3):308–17. https://doi.org/10.1111/ele.12569 .
Article
PubMed
Google Scholar
Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, Smith PA, et al. Decline of the north American avifauna. Science. 2019;366(6461):120–4. https://doi.org/10.1126/science.aaw1313 .
Article
CAS
PubMed
Google Scholar
Bowler DE, Heldbjerg H, Fox AD, Jong M, Böhning-Gaese K. Long-term declines of European insectivorous bird populations and potential causes. Conserv Biol. 2019;33(5):1120–30. https://doi.org/10.1111/cobi.13307 .
Article
PubMed
Google Scholar
Beresford AE, Sanderson FJ, Donald PF, Burfield IJ, Butler A, Vickery JA, et al. Phenology and climate change in Africa and the decline of afro-Palearctic migratory bird populations. Remote Sens Ecol Conserv. 2019;5(1):55–69. https://doi.org/10.1002/rse2.89 .
Article
Google Scholar
Burgess MD, Smith KW, Evans KL, Leech D, Pearce-Higgins JW, Branston CJ, et al. Tritrophic phenological match-mismatch in space and time. Nat Ecol Evol. 2018;2(6):970–5. https://doi.org/10.1038/s41559-018-0543-1 .
Article
PubMed
Google Scholar
Knowles SCL, Nakagawa S, Sheldon BC. Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: a meta-regression approach. Funct Ecol. 2009;23(2):405–15. https://doi.org/10.1111/j.1365-2435.2008.01507.x .
Article
Google Scholar
BirdLife International. European birds of conservation concern: populations, trends and national responsibilities. Cambridge: BirdLife International; 2017.
Google Scholar
Zwarts L, Bijlsma RG, van der Kamp J, Wymenga E. Living on the edge: wetlands and birds in a changing Sahel. Zeist: KNNV Publishing; 2009. doi:https://doi.org/10.4031/002533206787353088 , 40, 4, 3, 4.
Book
Google Scholar
Szép T, Liechti F, Nagy K, Nagy Z, Hahn S. Discovering the migration and non-breeding areas of sand martins and house martins breeding in the Pannonian basin (Central-Eastern Europe). J Avian Biol. 2017;48(1):114–22. https://doi.org/10.1111/jav.01339 .
Article
Google Scholar
Briedis M, Bauer S, Adamík P, Alves JA, Costa JS, Emmenegger T, et al. Broad-scale patterns of the afro-Palaearctic landbird migration. Glob Ecol Biogeogr. 2020;29(4):722–35. https://doi.org/10.1111/geb.13063 .
Article
Google Scholar
Glutz von Blotzheim U, Bauer K. Handbuch der Vögel Mitteleuropas. In: Passeriformes, vol. 10.1. Wiesbaden: Aula Verlag; 1985.
Google Scholar
Valkiūnas GA, Iezhova TA. Parasitic protozoa in the blood of birds in the USSR. 8. Haemoproteidae in Passeriformes. Ekologija. 1992;1:59–83.
Google Scholar
Deviche P, Greiner EC, Manteca X. Interspecific variability of prevalence in blood parasites of adult passerine birds during the breeding season in Alaska. J Wildl Dis. 2001;37(1):28–35. https://doi.org/10.7589/0090-3558-37.1.28 .
Article
CAS
PubMed
Google Scholar
Oakgrove KS, Harrigan RJ, Loiseau C, Guers S, Seppi B, Sehgal RNM. Distribution, diversity and drivers of blood-borne parasite co-infections in Alaskan bird populations. Int J Parasitol. 2014;44(10):717–27. https://doi.org/10.1016/j.ijpara.2014.04.011 .
Article
PubMed
Google Scholar
Garcia-Longoria L, Marzal A, de Lope F, Garamszegi L. Host-parasite interaction explains variation in the prevalence of avian haemosporidians at the community level. PLoS One. 2019;14(3):e0205624. https://doi.org/10.1371/journal.pone.0205624 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Paperna I, Rozsa L, Yosef R. Avian haemosporidian blood parasite infections at a migration hotspot in Eilat, Israel. Eur J Ecol. 2016;2(1):47–52. https://doi.org/10.1515/eje-2016-0005 .
Article
Google Scholar
Mohammad MK, Al-Moussawi AA. Blood parasites of some passeriform birds in Baghdad area, Central Iraq. Bull Iraq nat Hist Mus. 2012;12:29–36.
Google Scholar
Ciloglu A, Ergen AG, Inci A, Dik B, Duzlu O, Onder Z, et al. Prevalence and genetic diversity of avian haemosporidian parasites at an intersection point of bird migration routes: sultan marshes National Park, Turkey. Acta Trop. 2020;210:105465. https://doi.org/10.1016/j.actatropica.2020.105465 .
Article
CAS
PubMed
Google Scholar
Mead CJ. Colony fidelity and interchange in the sand martin. Bird Study. 1979;26(2):99–106. https://doi.org/10.1080/00063657909476625 .
Article
Google Scholar
Bensch S, Hellgren O, Perez-Tris J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour. 2009;9(5):1353–8. https://doi.org/10.1111/j.1755-0998.2009.02692.x .
Article
PubMed
Google Scholar
Liechti F, Scandolara C, Rubolini D, Ambrosini R, Korner-Nievergelt F, Hahn S, et al. Timing of migration and residence areas during the non-breeding period of barn swallows Hirundo rustica in relation to sex and population. J Avian Biol. 2015;46(3):254–65. https://doi.org/10.1111/jav.00485 .
Article
Google Scholar
Wernham C, Toms M, Marchant J, Clark J, Siriwardena G, Baillie S. The migration atlas. Movements of the birds of Britain and Ireland. London: T & A Poyser; 2002.
Google Scholar
Cowley E, Siriwardena GM. Long-term variation in survival rates of sand martins Riparia riparia: dependence on breeding and wintering ground weather, age and sex, and their population consequences. Bird Study. 2005;52(3):237–51. https://doi.org/10.1080/00063650509461397 .
Article
Google Scholar
Kuhnen K. Zur Paarbildung der Uferschwalbe (Riparia riparia). J Ornithol. 1985;126(1):1–13. https://doi.org/10.1007/BF01640439 .
Article
Google Scholar
Njabo KY, Cornel AJ, Sehgal RNM, Loiseau C, Buermann W, Harrigan RJ, et al. Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa. Malar J. 2009;8(1):1–12. https://doi.org/10.1186/1475-2875-8-193 .
Article
CAS
Google Scholar
Asghar M, Westerdahl H, Zehtindjiev P, Ilieva M, Hasselquist D, Bensch S. Primary peak and chronic malaria infection levels are correlated in experimentally infected great reed warblers. Parasitology. 2012;139(10):1246–52. https://doi.org/10.1017/S0031182012000510 .
Article
PubMed
Google Scholar
Emmenegger T, Alves JA, Costa JS, Rocha AD, Schmid R, Schulze M, et al. Population- and age-specific patterns of haemosporidian assemblages and infection levels in European bee-eaters (Merops apiaster). Int J Parasitol. 2020;50(14):1125–31. https://doi.org/10.1016/j.ijpara.2020.07.005 .
Article
CAS
PubMed
Google Scholar
Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S. Plasmodium relictum (lineage SGS1) and Plasmodium ashfordi (lineage GRW2): the effects of the co-infection on experimentally infected passerine birds. Exp Parasitol. 2011;127(2):527–33. https://doi.org/10.1016/j.exppara.2010.10.007 .
Article
PubMed
Google Scholar
Hegemann A, Alcalde Abril P, Muheim R, Sjöberg S, Alerstam T, Nilsson JÅ, et al. Immune function and blood parasite infections impact stopover ecology in passerine birds. Oecologia. 2018;188(4):1011–24. https://doi.org/10.1007/s00442-018-4291-3 .
Article
PubMed
PubMed Central
Google Scholar
Lisovski S, Bauer S, Briedis M, Davidson SC, Dhanjal-Adams KL, Hallworth MT, et al. Light-level geolocator analyses: A user’s guide. J Anim Ecol. 2020:221–36. https://doi.org/10.1111/1365-2656.13036 .
Lisovski S, Sumner MD, Wotherspoon SJ. TwGeos: Basic data processing for light based geolocation archival tags https://github.com/slisovski/TwGeos. https://github.com/slisovski/TwGeos. 2015.
Lisovski S, Hahn S. GeoLight - processing and analysing light-based geolocator data in R. Methods Ecol Evol. 2012;3(6):1055–9. https://doi.org/10.1111/j.2041-210X.2012.00248.x .
Article
Google Scholar
Lisovski S. GeoLight v2.01. GitHub repository. https://github.com/slisovski/GeoLight. 2017.
Google Scholar
Wotherspoon SJ, Sumner DA, Lisovski S. R package SGAT: solar/satellite geolocation for animal tracking; 2013.
Google Scholar
South A. Rworldmap: a new R package for mapping global data. R J. 2011;3(1):35–43. https://doi.org/10.32614/RJ-2011-006 .
Article
Google Scholar
Breidenbaugh MS, Clark JW, Brodeur RM, De Szalay FA. Seasonal and diel patterns of biting midges (Ceratopogonidae) and mosquitoes (Culicidae) on the Parris Island marine corps recruit depot. J Vector Ecol. 2009;34(1):129–40. https://doi.org/10.1111/j.1948-7134.2009.00016.x .
Article
PubMed
Google Scholar
Emmenegger T, Bauer S, Dimitrov D, Olano Marin J, Zehtindjiev P, Hahn S. Host migration strategy and blood parasite infections of three sparrow species sympatrically breeding in Southeast Europe. Parasitol Res. 2018;117(12):3733–41. https://doi.org/10.1007/s00436-018-6072-7 .
Article
PubMed
Google Scholar
Hellgren O, Waldenström J, Bensch S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol. 2004;90(4):797–802. https://doi.org/10.1645/GE-184R1 .
Article
CAS
PubMed
Google Scholar
DeGroote LW, Rodewald PG. An improved method for quantifying hematozoa by digital microscopy. J Wildl Dis. 2008;44(2):446–50. https://doi.org/10.7589/0090-3558-44.2.446 .
Article
PubMed
Google Scholar
Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
CAS
Google Scholar
Bodenhofer U, Bonatesta E, Horejš-Kainrath C, Hochreiter S. Msa: an R package for multiple sequence alignment. Bioinformatics. 2015;31:3997–9. https://doi.org/10.1093/bioinformatics/btv494 .
Article
CAS
PubMed
Google Scholar