Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012;13:336–49.
Article
PubMed
CAS
Google Scholar
Herculano-Houzel S. Numbers of neurons as biological correlates of cognitive capability. Curr Opin Behav Sci. 2017;16:1–7.
Article
Google Scholar
Laughlin SB. Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol. 2001;11:475–80.
Article
PubMed
CAS
Google Scholar
Niven JE, Laughlin SB. Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol. 2008;211:1792–804.
Article
PubMed
CAS
Google Scholar
Navarrete A, van Schaik CP, Isler K. Energetics and the evolution of human brain size. Nature. 2011;480:91–3.
Article
PubMed
CAS
Google Scholar
Roth G, Dicke U. Evolution of the brain and intelligence. Trends Cog Sci. 2005;9:250–7.
Article
Google Scholar
Kotrschal A, Rogell B, Bundsen A, Svensson B, Zajitschek S, Brännström I, Immler S, Maklakov AA, Kolm N. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr Biol. 2013;23:168–71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benson-Amram S, Dantzer B, Stricker G, Swanson EM, Holekamp KE. Brain size predicts problem-solving ability in mammalian carnivores. Proc Nat Acad Sci. 2016;113:2532–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Street SE, Navarrete AF, Reader SM, Laland KN. Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proc Nat Acad Sci. 2017;114:7908–14.
Article
PubMed Central
CAS
PubMed
Google Scholar
Farris SM. Evolutionary convergence of higher order brain centers spanning the protostome deuterostome boundary. Brain Behav Evol. 2008;72:106–22.
Article
PubMed
Google Scholar
Ilies I, Muscedere ML, Traniello JFA. Neuroanatomical and morphological trait clusters in the ant genus Pheidole: evidence for modularity and integration in brain structure. Brain Behav Evol. 2015;85:63–76.
Article
PubMed
Google Scholar
Barton RA, Harvey PH. Mosaic evolution of brain structure in mammals. Nature. 2000;405:1055–8.
Article
PubMed
CAS
Google Scholar
Smaers JB, Soligo C. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc Biol Sci. 2013;280:20130269.
Article
PubMed
PubMed Central
CAS
Google Scholar
Allman JM. Evolving brains. New York: Scientific American Library; 2000.
Google Scholar
Catania KC. Evolution of sensory specializations in insectivores. Anatom Rec A. 2005;287:1038–50.
Article
Google Scholar
Hölldobler B, Wilson EO. The superorganism: the beauty, elegance, and strangeness of insect societies. In: WW Norton & Company; 2009.
Google Scholar
Schneirla TC. Army ants: A study in social Organization Oxford. England: W. H. Freeman; 1971.
Google Scholar
Gotwald WH Jr Army ants: the biology of social predation. Cornell University Press (1995).
Brady SG. Evolution of the army ant syndrome: the origin and long-term evolutionary stasis of a complex of behavioral and reproductive adaptations. Proc Nat Acad Sci. 2003;100:6575–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Franks NR, Sendova-Franks AB, Anderson C. Division of labour within teams of new world and old world army ants. Anim Behav. 2001;62:635–42.
Article
Google Scholar
Powell S, Franks NR. Ecology and the evolution of worker morphological diversity: a comparative analysis with Eciton army ants. Funct Ecol. 2006;20:1105–14.
Article
Google Scholar
Powell S, Franks NR. How a few help all: living pothole plugs speed prey delivery in the army ant Eciton burchellii. Anim Behav. 2007;73:1067–76.
Article
Google Scholar
Powell S, Franks NR. Caste evolution and ecology: a special worker for novel prey. Proc R Soc B. 2005;272:2173–80.
Article
PubMed
PubMed Central
Google Scholar
Rettenmeyer CW. Behavioral studies of army ants. Univ Kans Sci Bull. 1963;44:281–465.
Google Scholar
Franks NR. Reproduction, foraging efficiency and worker polymorphism in army ants. In: Experimental Behavioral Ecology and Sociobiology: in Memoriam Karl Von Frisch,1886–1982 (eds B. Holldobler & M. Lindauer) 31:91–107. Sunderland: Sinauer Associates; 1985.
Google Scholar
Baudier KM, Mudd AE, Erickson SC, O'Donnell S. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). J Anim Ecol. 2015;84:1322–30.
Article
PubMed
Google Scholar
Seid MA, Castillo A, Wcislo WT. The allometry of brain miniaturization in ants. Brain Behav Evol. 2011;77:5–13.
Article
PubMed
Google Scholar
Eberhard WG, Wcislo WT. Grade changes in brain–body allometry: morphological and behavioural correlates of brain size in miniature spiders, insects and other invertebrates. Adv Ins Phys. 2011;40:155–214.
Google Scholar
Strausfeld NJ. The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arth Struct Devel. 2005;34:235–56.
Article
Google Scholar
Kubler LS, Kelber C, Kleineidam CJ. Distinct antennal lobe phenotypes in the leaf-cutting ant (Atta vollenweideri). J Comp Neurol. 2010;518:352–65.
Article
Google Scholar
Bulova S, Purce K, Khodak P, Sulger E, O'Donnell S. Into the black, and back: the ecology of brain investment in Neotropical army ants (Formicidae: Dorylinae). Sci Nat. 2016;103:1–11.
Article
CAS
Google Scholar
Gronenberg W, Liebig J. Smaller brains and optic lobes in reproductive workers of the ant Harpegnathos. Naturwissenschaften. 1999;86:343–5.
Article
CAS
Google Scholar
O'Donnell S, Clifford MR, DeLeon S, Papa C, Zahedi N, Bulova SJ. Brain size and visual environment predict species differences in paperwasp sensory processing brain regions (Hymenoptera: Vespidae, Polistinae). Brain Behav Evol. 2013;82:177–84.
Article
PubMed
Google Scholar
O'Donnell S, Bulova SJ, DeLeon S, Khodak P, Miller S, Sulger E. Distributed cognition and social brains: reductions in mushroom body investment accompanied the origins of sociality in wasps (Hymenoptera: Vespidae). Proc R Soc B. 2015;282:20150791.
Article
PubMed
PubMed Central
Google Scholar
Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K. Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem. 1998;5:11–37.
PubMed
PubMed Central
CAS
Google Scholar
Fahrbach SE. Structure of the mushroom bodies of the insect brain. Annu Rev Entomol. 2006;51:209–32.
Article
PubMed
CAS
Google Scholar
Farris SM, Robinson GE, Fahrbach SE. Experience and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci. 2001;21:6395–404.
Article
PubMed
CAS
PubMed Central
Google Scholar
Muscedere ML, Traniello JFA. Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct sub-caste- and age-related patterns of worker brain organization. PLoS One. 2012;7:e31618.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sulger E, Mcaloon N, Bulova SJ, Sapp J, O'Donnell S. Evidence for adaptive brain tissue reduction in obligate social parasites (Polyergus mexicanus) relative to their hosts (Formica fusca). Biol J Linn Soc. 2014;113:415–22.
Article
Google Scholar
O’Donnell S, Bulova SJ, DeLeon S, Barrett M, Fiocca K. Caste differences in the mushroom bodies of swarm-founding paper wasps: implications for brain plasticity and brain evolution (Vespidae, Epiponini). Behav Ecology Sociobiol. 2017;71:116.
Article
Google Scholar
Gronenberg W. Modality-specific segregation of input to ant mushroom bodies. Brain Behav Evol. 1999;54:85–95.
Article
PubMed
CAS
Google Scholar
Revell LJ. Phytools: An R package for phylogenetic comparative biology (and other.. things). Methods Ecol Evol. 2012;3:217–23.
Article
Google Scholar
Winston ME, Kronauer DJ, Moreau CS. Early and dynamic colonization of central America drives speciation in Neotropical army ants. Molec Ecol. 2017;26:859–70.
Article
Google Scholar
Wilson EO. The sociogenesis of insect colonies. Science. 1985;228:1489–95.
Article
PubMed
CAS
Google Scholar
Sutcliffe GH, Plowright RC. The effects of food supply on adult size in the bumble bee Bombus terricola Kirby (Hymenoptera: Apidae). Canad Entomol. 1988;120:1051–8.
Article
Google Scholar
Gronenberg W, Heeren S, Hölldobler B. Age dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus. J Exp Biol. 1996;199:2011–9.
PubMed
CAS
Google Scholar
Rehan SM, Bulova SJ, O'Donnell S. Cumulative effects of foraging behavior and social dominance on brain development in a facultatively social bee (Ceratina australensis). Brain Behav Evol. 2015;85:117–24.
Article
PubMed
Google Scholar
Jones TA, Donlan NA, O’Donnell S. Growth and pruning of mushroom body Kenyon cell dendrites during worker behavioral development in the paper wasp, Polybia aequatorialis (Hymenoptera: Vespidae). Neurobiol Learn Mem. 2009;92:485–95.
Article
PubMed
Google Scholar
Whelden RM. Anatomy of adult queen and workers of army ants Eciton burchelli Westw. And E. Hamatum Fabr. (Hymenoptera: Formicidae). J N Y Ent Soc. 1963;1:14–30.
Google Scholar
Stieb SM, Kelber C, Wehner R, Rössler W. Antennal-lobe organization in desert ants of the genus Cataglyphis. Brain Behav Evol. 2011;77:136–46.
Article
PubMed
Google Scholar
Weiser MD, Kaspari M. Ecological morphospace of new world ants. Ecol Entomol. 2006;31:131–42.
Article
Google Scholar
Wrege PH, Wikelski M, Mandel JT, Rassweiler T, Couzin ID. Antbirds parasitize foraging army ants. Ecology. 2005;86:555–9.
Article
Google Scholar