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Abstract

Background: White-nose Syndrome (WNS) has reduced the abundance of many bat species within the United
States’ Mid-Atlantic region. To determine changes within the National Park Service National Capital Region (NCR)
bat communities, we surveyed the area with mist netting and active acoustic sampling (2016-2018) and compared
findings to pre-WNS (2003-2004) data.

Results: The results indicated the continued presence of the threatened Myotis septentrionalis (Northern Long-eared
bat) and species of conservation concern, including Perimyotis subflavus (Tri-colored bat), Myotis leibii (Eastern Small-
footed bat) and Myotis lucifugus (Little Brown bat). However, we documented a significant reduction in the
abundance and distribution of M. lucifugus and P. subflavus, a decrease in the distribution of M. septentrionalis, and

an increase in the abundance of Eptesicus fuscus (Big Brown bat).

Conclusions: Documented post-WNS M. septentrionalis recruitment suggests that portions of the NCR may be
important bat conservation areas. Decreases in distribution and abundance of P. subflavus and M. lucifugus indicate
probable extirpation from many previously occupied portions of the region.
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Background

White-nose Syndrome is caused by the psychrophilic
fungi Pseudogymnoascus destructans [1-3], an invasive
species native to Eurasia [4—8]. White-nose Syndrome
has caused widespread mortality of cave-hibernating bats
[9-11]. For hibernating bats, fungal invasion of epithelial
tissue increased overwinter arousal, leading to a deple-
tion of fat reserves followed by mortality from starvation
or, for overwinter survivors, decreased post-hibernating
condition, decreased fitness, and shifts in reproductive
timing [9, 12—15]. Since WNS was first observed in New
York in 2006, P. destructans has spread to 33 states in
the United States (U.S.) and 7 provinces in Canada,
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including hibernacula presumably used by bats summer-
ing within the national capital region (NCR) around
Washington, District of Columbia (D.C.) [16]. Based
largely on winter hibernacula counts species, such as
Myotis lucifugus (Little Brown bat), Myotis septentrionalis
(Northern Long-eared bat), Myotis sodalis (Indiana bat),
and Perimyotis subflavus (Tri-colored bat), have under-
gone large population decreases [10, 11, 17]. In the spring,
these species migrate from hibernacula to summer habitat
[18]. Therefore, summer activity surveys have reflected
WNS-caused population declines of M. lucifugus, M. sep-
tentrionalis, and M. sodalis in Massachusetts, New Hamp-
shire, New York and West Virginia [12, 14, 19-23].
White-nose Syndrome does not impact all bat species
equally. Roosting behaviors, body sizes, hibernacula col-
ony sizes, environmental conditions of particular hiber-
nacula, WNS exposure levels and disease virulence can
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positively or negatively affect survival rates following
exposure to WNS [24, 25]. Although WNS can negatively
impact Eptesicus fuscus (Big Brown bat) [19], many indi-
viduals appear to be unaffected or are able to survive at
higher rates than other species, perhaps because their lar-
ger body size allows for greater fat reserves than smaller
bat species [26], or they are hibernating within warmer an-
thropogenic roosts unfavorable to growth of P. destructans
[27]. Despite high mortality rates, remnant populations of
M. lucifugus, M. septentrionalis, M. sodalis, and P. subfla-
vus can persist in WNS-affected areas [28—30].

When populations experience declines or extirpation,
competitive release may result in other species altering
their habitat use, increasing their range, or increasing
their population size; for example, some relaxation in
niche partitioning has been observed for bats in WNS-
impacted landscapes [31]. Along the East Coast, increases
in E. fuscus, Lasiurus borealis (Eastern Red bat), and
Lasiurus cinereus (Hoary bat) have corresponded with de-
creases in M. lucifugus, M. septentrionalis, M. sodalis and
P. subflavus [12, 19, 31]. However, total intra-night activity
indicated that other bat species were not expanding into
temporal niches formerly dominated by M. lucifugus post-
WNS [23, 31].

Urban environments can increase contact between indi-
viduals because of highly-concentrated resources, such as
limited foraging patches and limited day-roost availability,
or impact individuals’ physical condition through use of
marginal day roosts, increased competition for food re-
sources, and pollution [32]. Urbanization can impact bat
activity patterns and foraging ecology [33]. Therefore,
urbanization may exacerbate winter WNS population de-
clines, as better body condition entering hibernation can
increase WNS survival [34, 35] or compound WNS-
caused population declines with urbanization-caused de-
creases in reproductive success [12, 15, 29, 36]. Addition-
ally, highly-urbanized areas often have lower bat diversity
and activity levels than less-developed, rural, semi-natural,
or natural areas [36—43].

Hibernacula near the NCR have shown large declines
in M. lucifugus, M. sodalis, and P. subflavus populations
[17, 44]. Accordingly, we sought to document how sum-
mer bat communities and habitat associations in the NCR
have changed since WNS onset, in terms of overall bat ac-
tivity and changes to community membership. In 2003—
2004, Johnson et al. [45] surveyed bat communities within
11 NCR National Park Service (NPS) units to assess com-
munity patterns along an urban-to-rural gradient using a
combined active acoustic and mist-netting sample ap-
proach. Both methods allow for detection of bat species
and evaluation of relative activity or abundance. Acoustic
sampling records bat echolocation calls that can be identi-
fied to species, and mist netting captures and identifies in-
dividual bats [46].
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Our first objective was to compare the sampling effort
required to document presence of species pre- and post-
WNS. We expected that the effort required to document
the same species would be higher post-WNS than pre-
WNS [46]. Our second objective was to determine the
impacts of WNS on bat communities within the NCR by
considering relative abundance measures and distribu-
tion of detections in the NCR. We predicted shifts in
NCR community structure relative to the pre-WNS find-
ings of Johnson et al. [45], including possible population
decreases, population extirpations, and reduced distribu-
tion of species highly impacted by WNS (M. lucifugus,
M. septentrionalis, M. sodalis, and P. subflavus). Com-
petitive release of larger-bodied, less-affected species,
such as E. fuscus, or non-hibernating migratory species,
such as L. borealis, could result in increased abundance
or changes in habitat associations. Similar to Johnson
et al. [45], we predicted that the highest species richness
would be found in less-fragmented, rural habitats with
more forest cover, as fewer bat species occurred within
higher urbanization levels.

Methods
Study area
Our study area consisted of the 11 NPS units that
Johnson et al. [45] surveyed 2003-2004: Antietam
National Battlefield (ANTI), Catoctin Mountain Park
(CATO), Chesapeake and Ohio Canal National Histor-
ical Park (CHOH), George Washington Memorial Park-
way (GWMP), Harpers Ferry National Historical Park
(HAFE), Manassas National Battlefield Park (MANA),
Monocacy National Battlefield (MONO), National Cap-
ital Parks-Central (now National Mall and Memorial
Parks [NAMA]), National Capital Parks-East (NACE),
Rock Creek Park (ROCR) and Wolf Trap National Park
for the Performing Arts (WOTR; Fig. 1). The area covers
portions of the Coastal Plain (CHOH, GWMP, NACE,
NAMA), Piedmont (CHOH, GWMP, MANA, MONO,
ROCR, WOTR), Blue Ridge Mountains (CATO, CHOH,
HAFE) and Ridge and Valley (ANTI, CHOH, HAFE)
physiographic regions in D.C., Maryland, Virginia, and
West Virginia. Elevations in the sampled sites ranged
from sea level to 730 m, with higher elevations and more
complex topography in the western Blue Ridge and
Ridge and Valley regions. From May to August 2003—
2004 and 2016-2018, temperatures during sampling
ranged from minima of 2.1-254°C and maxima of
14.6-35.6 °C. Precipitation ranged from 290 to 1157 mm
per season, but was highly variable among years, with
2018 receiving more precipitation than other years.
White-nose Syndrome was first confirmed in the area
over the 2009-2010 winter period [16].

The region includes forests, pasture areas, suburban
development, and high-density urban development. The
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Fig. 1 National Park Service National Capital Region acoustic survey sites during pre-White-nose Syndrome (2003-2004) and post-White-nose
Syndrome (2016-2018) periods. Black stars indicate sites surveyed 2003-2004, and open stars indicate sites surveyed in both 2003-2004 and 2017.
Park abbreviations are: Antietam National Battlefield (ANTI), Catoctin Mountain Park (CATO), Chesapeake and Ohio Canal National Historical Park
(CHOH), George Washington Memorial Parkway (GWMP), Harpers Ferry National Historical Park (HAFE), Manassas National Battlefield Park (MANA),
Monocacy National Battlefield (MONO), National Capital Parks-Central [now National Mall and Memorial Parks (NAMA)], National Capital Parks-East
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(NACE), Rock Creek Park (ROCR), and Wolf Trap National Park for the Performing Arts (WOTR). CHOH follows the Maryland border with Virginia
and West Virginia from the western-most part of the study area to downtown District of Columbia (D.C)) between the two CHOH points. NACE
and GWMP points indicate the southern-most and northern-most parks within those units. Parks partially or entirely within D.C. include ROCR,

study area largely has an east-west (and, to a lesser ex-
tent, south-north) urban-to-rural gradient. The most
rural portions of the study area include CATO (a con-
tiguous forest unit surrounded by both private and pub-
lic forestland) and northwestern portions of CHOH in
central and western Maryland. As the longest unit with
the most habitat variation, CHOH follows the D.C. and
Maryland border with Virginia and West Virginia from
downtown D.C., through suburban development, agri-
cultural fields, and private and state forests and wildlife
management areas to Cumberland, Maryland. The
CHOH is adjacent to HAFE (a mix of rural mountainous
forest and open battlefields), near ANTI and MONO, and
adjacent to small portions of GWMP. The battlefield units
(ANTI, MANA, MONO) consist mainly of agricultural
fields and small forest woodlots. As a performing arts cen-
ter, WOTR is a combination of developed land and forest
fragments surrounded by a developed suburban landscape.
Near D.C,, GWMP primarily follows the Virginia border
and Potomac River. It contains larger contiguous forest
stands (e.g., Great Falls Park, approximately 13 km north of
D.C.) and linear forest strips along motorways. Units par-
tially or entirely within D.C. (ROCR, CHOH, NAMA,

NACE) are highly fragmented, with the exception of ROCR.
This unit primarily consists of 2 large contiguous forested
patches which follow 2 water courses to the Potomac River,
Rock Creek and Foundry Branch [47]. Dominated by open
areas and National Mall monuments, NAMA contains
minimal forest cover. The parks of NACE include units on
the southeastern bank of the Anacostia River, as well as a
thin linear forest strip running along the Baltimore-
Washington Parkway up to Greenbelt Park, a small con-
tiguous forest stand northeast of the city.

Currently, the region is dominated by a mix of oak-
hickory and mesophytic forest types, e.g., Quercus spp.
(oak species), Acer spp. (maple species), Liriodendron
tulipifera (yellow poplar) and to a lesser extent Pinus
spp. (pine species) [48]. Within the NCR units, forest
stands primarily consisted of mature and late succes-
sional forests, more so than the surrounding landscape
[47]. Deciduous tree species that dominate the upland
areas on NCR units include Acer rubrum (Red Maple),
Fagus grandifolia (American Beech), L. tulipifera, and
Quercus spp. Riparian forests along larger watercourses
contain Platanus occidentalis (Sycamore), Acer negundo
(Boxelder), and Liquidambar styraciflua (Sweetgum).
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Acoustic and mist-netting surveys

We replicated the active acoustic methods used by
Johnson et al. [45] to allow a direct comparison of echo-
location call data between 2003 and 2004 (pre-WNS)
and 2017 (post-WNS). Using the same acoustic record-
ing methods was important for directly comparing pre-
WNS call data recorded to post-WNS call data, as the
methods can impact detection and habitat associations
[49]. We used Anabat II (Titley Electronics, Ballina,
Australia) zero-crossing, frequency-division equipment
to actively survey at each sample site for one 20-min
period between sunset and 0200. If a bat was “observed”
as evidenced by audible echolocation sounds from the
recorder or by sight, we attempted to follow its direction
with the microphone to record a high-quality call se-
quence [50]. Active survey sites were in forested, wet-
land, and open habitats with a mean distance between
survey locations of 886 m + 982 m [45]. We avoided ac-
tive acoustic recording and netting during heavy precipi-
tation or low temperatures, as these can reduce bat
activity [51].

In 2003 and 2004, we surveyed 362 sites, and in 2017,
we revisited 147 sites (40.6%; Fig. 1). All echolocation
calls (2003-2004 and 2017) were identified to species
using the U.S Fish and Wildlife Service approved Kal-
eidoscope 4.5.0 Bats of North America 4.2.0 classifier
(Wildlife Acoustics, Inc., Concord, MA, USA) with the
following species considered as known or possibly extant
in the NCR: E. fuscus, Lasiurus borealis, Lasiurus ciner-
eus, Lasionycteris noctivagans, Mpyotis leibii (Eastern
Small-footed bat), M. lucifugus, M. septentrionalis, M.
sodalis, Nycticeius humeralis (Evening bat) and P. subfla-
vus. We used the number of echolocation calls identified
to species as response variables in statistical analyses.

We mist-netted from 28 May — 29 August in 2003
and 2004 (pre-WNS), as outlined in Johnson et al. [45].
Between 20 April and 10 August 2016-2018 (post-
WNS), we conducted mist-netting in these same NPS
units, and in some cases in the same survey locations.
Most post-WNS sampling effort was 15 May — 15 Au-
gust, per the Range-wide Indiana Bat Survey Guidelines
[52]. Post-WNS, netting locations were selected both to
provide a general survey of the region and additional ef-
fort in areas with acoustic and mist-netting detections of
M. lucifugus, M. septentrionalis, M. sodalis and P. subfla-
vus [43, 53]. Because of post-WNS captures of M. sep-
tentrionalis at ROCR [53], we allocated additional effort
there in 2018. We placed mist nets along possible flight
corridors, e.g., trails, roads with forest canopy cover,
and/or near water. The number and size of nets varied
by forest structure and logistics. Bat capture and hand-
ling procedures were approved under Virginia Tech In-
stitutional Animal Care and Use protocol 16-049 and
allowed under USFWS #TE34778A-2, Maryland
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Department of Natural Resources #56152, Virginia De-
partment of Game and Inland Fisheries #061519, and
West Virginia Division of Natural Resources #2018.180
scientific collecting permits. We identified bats to spe-
cies using a dichotomous key to the bats of this region
[54], and recorded sex, age (adult or juvenile), and re-
productive condition [55, 56]. We disregarded samples
when heavy precipitation or fog event (as defined by on-
the-ground observations) disrupted sampling.

Data analysis

We developed species accumulation curves for both our
acoustic and netting datasets, which provided an assess-
ment of species richness based on the level of sample ef-
fort [57]. We developed species accumulation curves for
each pre- or post-WNS dataset using the R package
vegan with random selection [58]. In the two acoustic
species-accumulation curves, we used all samples and 10
acoustically-detected species. For the pre- and post-
WNS species accumulation curves based on mist-net
sampling, we selected the nights with at least 4 h of net-
ting and no precipitation within the netting event, based
on on-the-ground observations. We created 2 sets of
species accumulation curves for the netting data: 1 with
the 6 species that were found both pre- and post-WNS
and 1 for all 9 species captured post-WNS.

To determine whether the number of echolocation
calls and number of bat captures for each species chan-
ged based on WNS, we performed paired and unpaired
t-tests in program R [59-61]. We used paired ¢-tests for
all acoustic sites that were sampled both pre- and post-
WNS. We used unpaired t-tests for analysis of all netting
sample data because we did not resample the exact same
locations pre- and post-WNS. The netting ¢-tests used
nightly captures per net to account for higher netting ef-
forts post-WNS.

Results

We recorded 4967 echolocation calls (2003-2004 =
3637; 2017 = 1330), which were identified to 10 species
(Table 1). Species richness declined in every NPS unit
except NACE, with all units losing detections of at least
1 species severely impacted by WNS (Table 2). Pre-
WNS survey years had higher proportions of nights with
identified bat echolocation calls (2003 = 80.0%, 2004 =
82.9%) than the post-WNS sample year (2017 = 69.4%;
Table 1).

Mist-net sampling varied greatly among years: there
were more post-WNS than pre-WNS capture events
(2003 = 34, 2004 =40, 2016 =13, 2017 =50, 2018 =98)
and later years had higher proportions of nights with bat
captures (2003 =61.8%, 2004 =285.0%, 2016 =76.9%,
2017 = 86.0%, 2018 =92.5%). In 2017 and 2018, netting
often had 33-100% more nets per night than pre-WNS
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Table 1 The total number of active acoustic survey samples with presence of each species (Sites), total bat echolocation calls (Total),
and mean and standard error (SE) of bat echolocation calls per active acoustic sample. Samples were collected 2003-2004 and 2017
in the National Park Service National Capital Region. Mean change is the 2017 mean minus the 2003-2004 mean. P-values were
from Pearson’s paired t-test. Calls were identified to species by using Kaleidoscope 4.5.0 Bats of North America 4.2.0 classifier (Wildlife
Acoustics Inc., Concord, MA, USA) for the following species: Eptesicus fuscus (Big Brown bat; EPFU), Lasiurus borealis (Eastern Red bat;

LABQ), Lasiurus cinereus (Hoary bat; LACI), Lasionycteris noctivagans (Silver-haired bat; LANO), Myotis leibii (Eastern Small-footed bat;
MYLE), Myotis lucifugus (Little Brown bat; MYLU), Myotis septentrionalis (Northern-Long eared bat; MYSE), Myotis sodalis (Indiana bat;
MYSQ), Nycticeius humeralis (Evening bat; NYHU) and Perimyotis subflavus (Tri-colored bat; PESU)

Species code 2003-2004 2017 Mean change P-value
Sites Total Mean (SE) Sites Total Mean (SE)
EPFU 139 889 246 (040) 60 679 4.62 (0.96) 2.16 0.01
LABO 77 151 042 (0.06) 39 104 0.71 (0.17) 0.29 0.07
LACI 125 496 1.37 (0.21) 35 85 0.58 (0.13) -0.79 0.07
LANO 150 878 243 (0.34) 55 251 1.71(0.32) -0.72 0.86
MYLE 17 23 0.06 (0.02) 1 1 0.01 (0.01) -0.05 0.05
MYLU 106 573 1.58 (0.33) 29 66 044 (0.09) -1.14 0.00
MYSE 28 48 3(0.03) 1 13 0.09 (0.08) -0.04 033
MYSO 28 77 1 (0.05) 8 9 0.06 (0.02) -0.15 0.01
NYHU 54 108 0.30 (0.52) 34 94 0.64 (0.18) 034 0.13
PESU 81 394 1.09 (0.21) 14 28 0.19 (0.07) -0.90 0.01

surveys, and these years focused on areas where previous
passive acoustic surveys had documented presence of
species highly impacted by WNS [53], likely increasing
the likelihood of capture of rare species. Six species were
captured both pre- and post-WNS, and only in post-
WNS vyears, we captured Lasionycteris noctivagans, M.
leibii, and N. humeralis (Tables 2 and 3). Post-WNS, we
captured M. lucifugus and P. subflavus only in north-
western Maryland (CHOH), and their absences from all
other units were the primary drivers to post-WNS de-
creases in unit-level species richness for both netting
and acoustics data (Table 2). We noted no evidence of
reproduction in the M. lucifugus and P. subflavus cap-
tures, and we only documented evidence of reproduction
(pregnant and lactating females) and successful recruit-
ment (juvenile bats) in M. septentrionalis populations
within ROCR.

Acoustic species accumulation curves indicated that
more effort was required to detect all species post-WNS
than pre-WNS, despite more capture success post-WNS.
Pre-WNS, 94 active acoustic samples were required to
document a species richness of 10 (SD +0), whereas
post-WNS, the species richness was 9.31 (SD + 0.68) for
the same effort (Fig. 2). Even with the focused post-
WNS surveys, pre-WNS netting required 65 netting
nights for a species richness of 6 (SD + 0), but that effort
for the same 6 species post-WNS vyielded a species rich-
ness of 5.07 (SD +0.76; Fig. 2). For the post-WNS net-
ting species accumulation curve of all 9 extant species
captured, 65 nights yielded a species richness of 7.28
(SD + 1.20; Fig. 2). All 3 post-WNS species accumulation

curves required almost every sample included in the
analysis in order to reach the maximum species richness
with a standard deviation of 0 (acoustics = 147, both net-
ting = 109).

Based on ¢-tests and overall detections, we observed
significant post-WNS increases in E. fuscus and signifi-
cant distribution decreases occurred for M. lucifugus
and P. subflavus (P < 0.05; Tables 1 and 3). We also ob-
served significant post-WNS increases in the mean
number of captures of Lasionycteris noctivagans and
decreases in the recorded acoustic calls for M. leibii
and M. sodalis (Tables 1 and 3). Both pre- and post-
WNS netting results indicated that species richness was
highest in western portions of CHOH, where the NCR
is the least urbanized and contains the highest propor-
tions of rural and forested landscapes. However, we did
not determine a uniformly-negative trend with regard
to urbanization, as we also recorded high species rich-
ness in highly-urban units. We captured all M. septen-
trionalis in ROCR, except for a single capture in
CATO; 76.9% of L. noctivagans in ROCR (n = 10); and
all but 1 N. humeralis in GWMP (Great Falls Park).
Eptesicus fuscus were active throughout the NCR, with
the least activity coinciding with open, agricultural, or
suburban portions of CHOH, MONO, and MANA.
Most activity was in the D.C. area within the larger
contiguous forested portions of ROCR and NACE. We
captured more Lasiurus borealis west of Great Falls
Park (along the geological fall line between the Pied-
mont and Coastal Plain); however, distribution varied
greatly across the landscape.
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Table 2 Species richness documented through active acoustic and mist-net sampling in National Park Service National Capital
Region units 2003-2004 and 2016-2018. Species lost indicate species that were documented 2003-2004 but not 2016-2018. Species
gained are those species documented in 2016-2018 but not 2003-2004. Note that sample effort by unit was not equal between
2003 and 2004 and 2016-2018. Unit abbreviations are: Antietam National Battlefield (ANTI), Catoctin Mountain Park (CATO),
Chesapeake and Ohio Canal National Historical Park (CHOH), George Washington Memorial Parkway (GWMP), Harpers Ferry National
Historical Park (HAFE), Manassas National Battlefield Park (MANA), Monocacy National Battlefield (MONO), National Capital Parks-
Central [now National Mall and Memorial Parks (NAMA)], National Capital Parks-East (NACE), Rock Creek Park (ROCR), and Wolf Trap
National Park for the Performing Arts (WOTR). Species abbreviations are: Eptesicus fuscus (Big Brown bat; EPFU), Lasiurus borealis
(Eastern Red bat; LABO), Lasiurus cinereus (Hoary bat; LACI), Lasionycteris noctivagans (Silver-haired bat; LANO), Myotis leibii (Eastern
Small-footed bat; MYLE), Myotis lucifugus (Little Brown bat; MYLU), Myotis septentrionalis (Northern Long-eared bat; MYSE), Nycticeius
humeralis (Evening bat; NYHU) and Perimyotis subflavus (Tri-colored bat; PESU)

Sample method Unit Species richness Species lost Species gained
2003-2004 2016-2018
Acoustics ANTI 9 N/A N/A N/A
CATO 10 8 MYLE, MYSE
CHOH 10 8 MYLE, MYSE
GWMP 10 N/A N/A N/A
HAFE 8 2 EPFU, LACI, LANO, MYLU, MYSO, PESU
MANA 10 8 MYSE, MYSO
MONO 7 N/A N/A N/A
NAMA 6 5 PESU
NACE 8 8 MYSO MYSE
ROCR 8 7 MYSE
WOTR 8 1 EPFU, LABO, LANO, MYLU, MYSE, NYHU, PESU
Netting ANTI 3 2 MYLU
CATO 4 3 MYLU
CHOH 6 7 MYSE, LACI MYLE, NYHU, LANO
GWMP 4 3 MYLU, PESU NYHU
HAFE 3 3 MYSE LACI
MANA 3 2 PESU
MONO 4 2 MYLU, PESU
NAMA 1 1 LABO EPFU
NACE 2 2
ROCR 6 4 MYLU, PESU, LACI LANO
WOTR 2 1 LABO
Discussion was also a non-significant decline in M. septentrionalis
We determined that active acoustic sampling, as echolocation calls across the NCR, despite our capture

employed in this study, was not suitable for detecting
rare bat species on the current post-WNS landscape.
Our species accumulation curves reflect decreases in
WNS-impacted bat species and higher variation in de-
tections. Similarly, other studies have reported that post-
WNS sampling effort should be higher than pre-WNS
efforts [46, 62]. The small sampling window for active
acoustic methods likely limited detection, especially
post-WNS. The limitations of our active acoustic sam-
pling are underscored by not observing post-WNS M.
septentrionalis echolocation calls in ROCR, whereas our
mist-netting results indicated continued presence. There

data indicating a significant decline in post-WNS occur-
rence. Although our active acoustic sampling techniques
may continue to be options for comparing community
activity to historical data [46, 63] or for detecting com-
mon bats, the sampling period for these methods ap-
pears inadequate to fully document post-WNS bat
communities.

We recorded significant declines in relative abundance
and distribution of WNS-impacted species M. lucifugus
and P. subflavus. These results are similar to those of
other summer surveys comparing pre- to post-WNS ac-
tivity within the northeastern U.S. [21-23]. Though our
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Table 3 The total number of each species captured (Total Captures), total per mist-net (Total), and mean and standard error (SE) of
bat captures per mist-net 2003-2004 and 2016-2018 in the National Park Service National Capital Region. Mean change is the 2016~
2018 mean minus the 2003-2004 mean of each species. P-values are from Pearson’s t-test. Bat species are: Eptesicus fuscus (Big
Brown bat; EPFU), Lasiurus borealis (Eastern Red bat; LABO), Lasiurus cinereus (Hoary bat; LACI), Lasionycteris noctivagans (Silver-haired
bat; LANO), Myotis leibii (Eastern Small-footed bat; MYLE), Myotis lucifugus (Little Brown bat; MYLU), Myotis septentrionalis (Northern
Long-eared bat; MYSE), Nycticeius humeralis (Evening bat; NYHU) and Perimyotis subflavus (Tri-colored bat; PESU)

Species code Total captures 2003-2004 2016-2018 Mean change P-value
Total Mean (SE) Total Mean (SE)

EPFU 958 39.73 0.54 (0.10) 165.77 1.03 (0.11) 049 0.01
LABO 181 19.95 0.27 (0.06) 24.01 0.15 (0.02) -0.12 0.20
LACI 4 0.92 0.01 (0.01) 0.14 0.00 (0.00) -0.01 025
LANO 13 0.00 0.00 (0.00) 240 1(0.01) 0.01 0.01
MYLE 1 0 0.00 (0.00) 0.17 0.00 (0.00) 0.00 032
MYLU 108 338 046 (0.17) 047 0.00 (0.00) -046 0.01
MYSE 51 6.95 0.09 (0.03) 4.83 0.03 (0.01) -0.06 0.2
NYHU 4 0 0.00 (0.00) 0.68 0.00 (0.00) 0.00 031
PESU 34 105 0.14 (0.04) 0.17 0.00 (0.00) -0.14 0.00

analyses did not document a significant change in M.
septentrionalis capture rates, this non-significance is
likely the result high post-WNS mist-netting sampling
density in ROCR, which may have introduced a overly-
conservative bias in our comparison. Nonetheless, we
still observed a decrease in distribution throughout the
study area.

Increases in post-WNS E. fuscus activity in the NCR
aligned with documented stable populations in New
York summer habitat 2004—2010 [21], 43% increases in
a New York hibernaculum 2-3 years after WNS detec-
tion [26] and 12% increases in captures approximately
1-3years after WNS detection in Indiana [29]. Eptesicus
fuscus populations may have avoided WNS-related de-
clines based on hibernation conditions, e.g., uninfected
hibernacula, temperature within hibernacula or shorter
hibernation periods, as well as being physiologically less
challenged by or resistant to P. destructans [24, 25, 64,
65]. Lasiurus borealis activity was similar between pre-
and post-WNS sampling periods, indicating no expan-
sion into WNS-emptied habitat niches [31] or potential
wind-energy driven population declines [66]. Our results
are similar to those of pre-WNS versus post-WNS com-
parisons of bat communities in South Carolina and New
York [23, 67].

Whereas urbanization influenced some species’ distri-
butions, it has not appeared to have exacerbated WNS
declines. We found our only evidence of recruitment
among highly WNS-impacted species in D.C. Some com-
bination of disease resistance, summer habitat, overwin-
tering patterns and a small pre-WNS population of
WNS-susceptible species may have led to ROCR being a
potential M. septentrionalis refugium within the Mid-

Atlantic region. Pre-WNS, both M. septentrionalis and
M. lucifugus captures were relatively rare in ROCR com-
pared to most other units, yet M. septentrionalis popula-
tions appear to be successfully reproducing only within
ROCR. Although M. septentrionalis’ survival mechanisms
are not yet known, remnant M. lucifugus populations
along the East Coast have exhibited genetically based re-
sistance and avoidance behavior that may reduce WNS
impacts [28, 68]. As a mostly-contiguous unit with older-
growth, late-successional forest [47], ROCR contained a
diverse mix of tree sizes and a high density of large stand-
ing snags and trees with cavities and bark conditions con-
ducive to M. septentrionalis day-roosting. Given the
mature forest, year-round water sources, and surrounding
established neighborhoods with numerous tree and an-
thropogenic day-roost opportunities, ROCR may provide
an optimal balance of forest and edge habitat, access to
water resources, and both natural and anthropogenic
roosting and hibernacula options. Recent overwinter de-
tections of M. septentrionalis along coastal areas to the
southeast of ROCR [69-72] provide evidence that some
individuals are not migrating to P. destructans-infected
hibernacula to the west in the Appalachian Mountains.
The authors’ capture of a M. septentrionalis in ROCR on
1 November 2018 provides additional support for this hy-
pothesis. In the more easterly urban areas, we observed
slightly higher E. fuscus activity overall. Our E. fuscus re-
sults are similar to those of a landscape-scale survey in
Georgia and the Carolinas that reported higher E. fuscus
abundance within NPS units with high levels of developed
land within 5 km [73]. Still, within the D.C. area, we saw
higher activity within larger forest patches, similar to ob-
servations in Mexico City [38].
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Fig. 2 Species accumulation curves for active acoustic and mist netting surveys in the National Park Service National Capital Region 2003-2018.
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deviations with a acoustic sampling both 2003-2004 and 2017; b mist netting with only 6 species captured 2003-2004; and ¢ mist netting with

We suggest caution regarding the interpretation of
pre- and post-WNS comparisons in the NCR and other
WNS-affected regions. When comparing post-WNS
communities to pre-WNS communities, it is necessary
to be cognizant of how improved sampling methods
have potentially increased detection and capture rates,
whether through compliance with USFWS M. sodalis
survey guidelines [52] or technological improvements
(e.g., passive vs. active acoustics, use of automated iden-
tification software, netting equipment). Documented bat
echolocation calls and capture rates also may have been
influenced by the habitat structure in more urban, frag-
mented forest stands, with travel corridors concentrating
bat activity more than in largely forested landscapes.
Moreover, annual weather variation may have influenced

differences in acoustic and capture data as well as year-
to-year demographic changes [74-76]; 2018 had the
most netting samples and had higher levels of precipita-
tion than any other year. The differences in pre- and
post-WNS netting species accumulation curves are likely
greater than the species accumulation curves demon-
strate, as differences in netting effort on each sample
night were unaccounted for.

Conclusions

Based on the documented declines in bat passes and
capture rates of M. lucifugus and P. subflavus popula-
tions, these species may be functionally extirpated
throughout much of the NCR. Acoustic echolocation
calls and netting capture rates for E. fuscus increased
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significantly. Consequently, long-term monitoring would
be required in the region to determine E. fuscus popula-
tion increases, and intensive future surveys would be re-
quired to assess possible habitat expansion of bats less
impacted by WNS (E. fuscus and L. borealis) into vacant
niches. Furthermore, additional assessments in the Mid-
Atlantic region are needed to determine whether or how
M. septentrionalis persistence is linked to atypical over-
wintering activities, such as use of coastal forests to the
east and southeast of the NCR rather than cave hiber-
nacula, high-quality maternity habitat conditions in re-
sidual NCR forest patches, or other genetic or behavioral
resistance mechanisms.
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