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White-nose syndrome fungus,
Pseudogymnoascus destructans, on bats
captured emerging from caves during
winter in the southeastern United States
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Abstract

Background: Emerging infectious diseases in wildlife are an increasing threat to global biodiversity. White-nose
syndrome (WNS) in bats is one of the most recently emerged infectious diseases in North America, causing massive
declines in eastern bat populations. In the Northeast, winter behavior of bats during the hibernation period, such
as flying during the day or in cold weather, has been attributed to WNS. However, winter emergence of bats in the
southeastern United States, where winters are warmer, has received little attention. The goals of this study were to
determine if winter emergence results from infection by Pseudogymnoascus destructans, the causative pathogen of
WNS, and to investigate how pathogen load and prevalence vary by species, site, and over time.

Results: We collected epidermal swab samples from 871 active bats of 10 species captured outside of hibernacula
in Tennessee during winters 2012–2013 and 2013–2014. Deoxyribonucleic acid (DNA) from P. destructans was not
detected on 54% of these bats, suggesting that winter emergence occurs regardless of fungal infection. Among
infected bats, Perimyotis subflavus (tri-colored bats) had the highest mean fungal load, whereas Myotis lucifugus
(little brown bats) had the highest infection prevalence of all individuals captured. Less than 18% (n = 59 of 345
individuals sampled) of all M. grisescens (gray bats) captured had detectible P. destructans DNA on their forearms
and muzzle. Hibernacula with large M. grisescens populations had lower fungal loads than sites used by other
species; however, mean load per species did not significantly differ between M. grisescens and non-M. grisescens
sites.

Conclusions: We found that pathogen load and prevalence were higher on bats captured during winter
2012–2013 than in the following winter, indicating that fungal loads on bats did not increase the longer a
site was presumably contaminated. Repeated low-dose exposure, mild temperatures, and availability of prey
during winter in the Southeast may provide a regional refuge for surviving bat populations.
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Background
Emerging infectious diseases in wildlife pose an increas-
ing threat to global biodiversity and conservation [1, 2].
A significant proportion of these diseases are the result
of “pathogen pollution”: the introduction by humans or
livestock of novel pathogens into naïve wildlife popula-
tions [2, 3]. Prominent examples of pathogen pollution
causing mass mortality are African rinderpest and am-
phibian chytridiomycosis. In the 1880’s rinderpest killed
90% of Kenya’s buffalo population, resulting in down-
stream effects on predator populations and ecosystem
health [2]. Chytridiomycosis has infected over 50% of all
amphibian species and can kill 80% of a population
within 4–5 months of its introduction [4]. Such emer-
ging infectious diseases are devastating to native species,
with deleterious effects that pervade ecosystems [2, 5].
White-nose syndrome (WNS) is a recently emerged in-

fectious disease that has rapidly spread through eastern
populations of cave hibernating bats in North America. It
is caused by the psychrophilic fungus Pseudogymnoascus
destructans, and was first documented in North America
in February 2006 at a cave in upstate New York [6, 7].
This invasive pathogen, which is hypothesized to have
originated in Eurasia [8–10], has since spread to more
than half of the United States (U.S.) and five Canadian
provinces and has killed over 5.7 million bats [11]. Cur-
rently, at least six bat species are experiencing detectable
population losses due to WNS, wherein once abundant
species are now threatened with regional extinction [11–
14]. Population declines and the loss of bat species due to
WNS are likely to have major ecological and economic
consequences, with expected increases in crop and forest
pest populations [15, 16].
Pseudogymnoascus destructans colonizes the cutane-

ous membranes of the muzzle, ears, wings and tail of
bats, eroding the epidermis and invading the underlying
skin and connective tissue [17]. Once invasion occurs,
P. destructans disrupts critical physiological functions
such as cutaneous respiration, blood circulation, and
water balance [18–21]. These physiological changes result
in more frequent arousals from torpor and increased de-
pletion of energy reserves needed for hibernation [21, 22].
Recent studies suggest infected individuals can elicit the
initial stages of an immune response (e.g. transcription of
cytokines); however, a protective response does not occur
due to hibernation [23–25]. Bats with WNS also exhibit
aberrant behavior in winter, including movement from
thermally stable cave environments to locations near the
cave entrance, daytime emergence, and flying in cold win-
ter temperatures [7, 12, 26].
Species-specific behaviors during hibernation, such as

microclimate preference, may also play a role in disease
susceptibility and survival [14, 27, 28]. In North America,
small bodied bats have been known to hibernate at

microclimate temperatures ranging from 0 to 10 °C
[20] and relative humidity as high as 90–100%, which
fall within the optimal growing conditions for P.
destructans. Whereas larger bodied species, like E. fus-
cus (mean = 12 g) and M. grisescens (mean = 10 g),
often roost in colder, drier sites in a hibernacula [29].
European bats, such as M. myotis, a 30 g species, have
been found to hibernate at microclimate temperatures
ranging from −4 to 12 °C [30], suggesting that there is
no optimal microclimate temperature for hibernating
bat species, with individual-specific microclimate pref-
erences within a species ranging widely [31, 32].
Myotis myotis is the most frequent bat in Europe doc-
umented with P. destructans and ulcerations leading
to the manifestation of WNS [27, 33–35]. Naturally
occurring P. destructans infections on M. myotis have
been found to be quite extensive, yet have not lead to
widespread mortality of the species [33]. Overall, the
most affected bat species in Europe are larger bodied
species, whereas in North America, small bodied indi-
viduals have experienced the largest population de-
clines due to WNS [13, 14, 36].
In northeastern North America, where winters are

severe and prey is limited, bats flying outside during the
hibernation period are likely suffering the effects of WNS.
However, bats in the southeastern U.S. are known to leave
hibernacula to feed on warm winter nights [Bernard et al.
unpublished], suggesting that winter activity in the South
may not be a consequence of disease [37]. As an example,
minimum night time temperatures throughout January in
Tennessee over the last four years ranged from −17 °C to
−6 °C, whereas external cave temperatures in Vermont
ranged from −27 °C to −17 °C, consistently 10 °C colder
[38]. As WNS has now spread throughout much of the
southeastern U.S. [39] the possible effects of winter activ-
ity on the epizootiology of WNS remain unknown. Winter
foraging on insects may provide bats hibernating in south-
ern latitudes with energy not available to bats in the
North. Further, arousing from torpor to engage in episodic
feeding during winter will raise body temperature, which
should activate the immune system and possibly bolster
immunological defenses against P. destructans. Evidence
from rabies in bats [40], as well as other host-pathogen
systems [41, 42], demonstrates that host immunity can
result from repeated low-level exposure to pathogens.
Behaviorally and physiologically, bats in the South may be
different from northern bats in ways that enable them to
survive WNS. To investigate possible effects of winter
activity on P. destructans infections on bats in southern
latitudes, we examined fungal load and prevalence on bats
captured outside of hibernacula during winter.
In this study, we assessed prevalence and fungal load

of P. destructans and identified lesions and ulcerations
caused by penetration of P. destructans into wing and
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tail membranes for ten species of bats captured while
active outside of hibernacula during two winters in
Tennessee. Our goals were to determine if emergence
during winter is caused by the presence of P. destructans
and to examine if there are relationships between winter
activity, fungal load and prevalence, and bat species. To
address these goals, we tested the following hypotheses: 1)
active bats leaving caves during winter in the Tennessee
will show signs of WNS as demonstrated by fungal load
or ultraviolet fluorescence; 2) fungal load and prevalence
will be higher on small-bodied cave hibernating species,
such as M. lucifugus (little brown bats), M. septentrionalis
(northern-long eared bats) and Perimyotis subflavus (tri-
colored bats), than larger bodied species, such as Eptesicus
fuscus (big brown bats) and M. grisescens (gray bats).

Methods
We conducted our study at the entrances of five hiber-
nacula in Tennessee from October to April 2012–2013
and 2013–2014 (Fig. 1). Prior to the emergence of
WNS, Blount Cave was the largest known endangered
M. sodalis (Indiana bat) hibernaculum in the state of
Tennessee, with an estimated population of 9500 indi-
viduals in February 2013 [43]. Small numbers of M.
lucifugus and P. subflavus also occur in the cave.
Hawkins and Warren Caves are two of the largest hi-
bernacula for endangered M. grisescens in the state,
with estimated populations of 150,000 and 400,000 M.

grisescens, respectively. Both caves also contain a small
population of M. sodalis during winter [44]. Campbell and
White Caves contain populations of M. leibii (eastern
small-footed bats), M. lucifugus, M. septentrionalis, and
M. sodalis, with fewer than 1000 individuals in each cave
[45]. Bats in Blount and Hawkins Caves were confirmed
positive for P. destructans in the winters of 2009–2010
and 2010–2011, respectively, with all other sites confirmed
by winter 2012–2013 [44, 46].
We captured bats at each site once a month using

mist-nets (Avinet Inc., Dryden, NY; mesh diameter: 75/
2, 2.6 m high, 4 shelves, 6–12 m wide). Site-specific sin-
gle-, double- and triple-high nets were deployed 30 min
before civil sunset at cave entrances and along corri-
dors within 100 m of the cave. We kept the nets open
for 5 h or until we captured 30 bats and closed them
when temperatures dropped below 0 °C. After capture,
individual bats were placed in paper bags and held for
30 to 60 min in an insulated box with four hand-
warmers (HotHands®, Dalton, GA). Myotis grisescens
and M. sodalis were held for a maximum of 30 min.
We recorded species, reproductive condition, forearm
length (mm), weight (g), mite load [47] and wing-
damage index (WDI, [48]), and collected epidermal
swab samples from each bat following established pro-
tocols (see below). During the winter of 2013–2014, we
examined bats for the presence of WNS-related fluor-
escence by transilluminating the wings with ultraviolet

Fig. 1 Cave locations within their county boundaries in Tennessee, United States. Bats were captured at each site once per month during winter
(October to April) 2012–2013 and 2013–2014. At least one bat at each site was found positive for P. destructans by winter 2012–2013
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(UV) light (wavelengths 385–390 nm, [49, 50]). If P.
destructans has penetrated the skin, lesions fluoresce
yellow-orange under UV illumination [49]. Fungal sam-
ples for each individual were collected using a sterile epi-
dermal swab dipped in sterile deionized water and rubbed
on the bat’s forearm and muzzle five times each [51].
Swabs were placed in RNAlater® Tissue Stabilization Solu-
tion (Life Technologies, Grand Island, NY) and stored at
4 °C. All cave-roosting species were banded with either
2.4 mm or 2.9 mm numbered, lipped alloy forearm bands
(Porzana, Ltd., Icklesham, East Sussex, UK) and released
at the site of capture. Due to the distance between sites
and the lack of evidence to suggest movement occurs be-
tween caves during winter in the region, we assumed each
cave was a closed population.
We extracted fungal DNA from each swab sample using

DNeasy 96 Blood & Tissue kits (Qiagen Inc., Valencia,
CA; [52]). All samples, as well as negative control wells
distributed across each polymerase chain reaction (PCR)
plate, were tested for the presence of P. destructans DNA
using a Real-Time PCR assay targeting the intergenic spa-
cer (IGS) region of the ribosomal ribonucleic acid (rRNA)
gene complex [53]. All plates were run in duplicate with a
quantified standard of isolate P. destructans 20,631–21.
Any reaction that crossed the threshold baseline in fewer
than 40 cycles on either plate was considered positive for
P. destructans DNA and, when relevant, the average P.
destructans load, hereafter referred to as fungal load, in
nanograms (ng) was calculated in each sample based on
the cycle threshold (Ct) value and a generated standard
curve based on serial dilutions ([34]; nanograms P.
destructans = 10–3.348xCt+22.049). Fungal load values of P.
destructans were averaged across both runs.
We followed field decontamination protocols in accord-

ance with the United States Fish and Wildlife Service
WNS Decontamination Guidelines and recommendations
by the state of Tennessee [54]. All capture and handling
techniques were approved by the University of Tennessee
Institute of Animal Care and Use Committee (IACUC
2026–0514) and were consistent with the guidelines is-
sued by the American Society of Mammalogists [55]. We
obtained both federal (USFWS TE-71613A; GRSM-2013-
SCI-1053; GRSM-2014-SCI-1053) and state (TWRA 3716;
TDEC 2011–031) permits to capture and handle bats at
winter hibernacula for this study.

Statistical analysis
Fungal load data were log transformed prior to analyses
to meet assumptions of normality and homogeneity of
variance. We used separate generalized linear models
(function glm in package lme4 [56] in Program R v
3.1.2 [57]) to compare changes in load and prevalence
of P. destructans for each species over time. Models
were run as either binomial (prevalence) or Gaussian

(fungal loads) distributions, and were tested for signifi-
cance using likelihood ratio tests. To determine the
change in P. destructans load and prevalence over time
within each model, we used a modified time axis similar
to Langwig et al. 2015 [36] where time-0 represented
the start of hibernation (October 1). Infection preva-
lence was calculated by dividing the total number of in-
fected individuals by the total number of individuals
captured during the same time period. All means are
reported ± standard error. The results presented herein
represent bats captured outside of each site, not of the
hibernating population as a whole.

Results
We captured and swabbed 871 bats of 10 species (593
males, 276 females, 2 unknowns due to escape; Table 1).
Of these, 408 individuals were positive for the presence of
P. destructans DNA (Pd+) by Real-Time PCR analysis. At
least one individual from all species captured was Pd+,
including two Corynorhinus rafinesquii (Rafinesque’s big-
eared bat), two Lasiurus borealis (eastern red bat) and one
Lasionycteris noctivagans (silver-haired bat) ([58]; Table
1). However, these three species were excluded from the
comparative analyses due to small sample sizes. Capture
rates of M. septentrionalis, M. sodalis, and P. subflavus
dramatically declined during winter 2013–2014, with M.
septentrionalis rarely captured after December 2013.
Fifty-one percent of the bats captured (n = 245/480)

during winter 2012–2013 were Pd+, whereas only 41.6%
of the bats (n = 163/391) were Pd + in winter 2013–2014.
When pooled by season, mean fungal loads were signifi-
cantly higher during the first year of sampling (likelihood
ratio test: X2 = 17.978, p < 0.0001). Excluding species with
low sample size, there were significant differences in load

Table 1 Total bats captured and swabbed at five caves in
Tennessee during winters 2012–2013 and 2013–2014

Winter 2012–2013 Winter 2013–2014

Species Pd+ Pd- Total Pd+ Pd- Total

Corynorhinus rafinesquii a 1 2 3 1 4 5

Eptesicus fuscus 8 11 19 8 11 19

Lasiurus borealis a 2 0 2 0 3 3

Lasionycteris noctivagans a 0 0 0 1 2 3

Myotis grisescens 24 139 163 35 147 182

Myotis leibii 21 23 44 24 27 51

Myotis lucifugus 11 1 12 14 5 19

Myotis septentrionalis 84 31 115 46 9 55

Myotis sodalis 38 11 49 14 8 22

Perimyotis subflavus 55 18 73 21 11 32

Tallies are provided for the total number of individuals determined positive
(Pd+) or negative (Pd-) for P. destructans through real-time PCR analysis
aData for these species are explained further in Bernard et al. [58]
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of P. destructans per species over time (likelihood ratio
test: X2 = 278.06, p < 0.0001, Fig. 2). Fungal loads were
lowest when bats entered hibernation in October
(−4.99 ± 0.328 log10 ng) and peaked for most species dur-
ing mid-hibernation (December–February; −2.80 ± 0.095
log10 ng; Fig. 2 and Additional file 1). Thereafter, mean
fungal loads on six of the seven species remained stable
through the end of the hibernation period in April.
However, mean fungal load on P. subflavus, the seventh
species, continued to increase through the end of hiber-
nation, reaching levels twice as high as those recorded
in December (Fig. 2). Perimyotis subflavus had the
highest mean P. destructans load (−2.34 ± 0.091 log10
ng), whereas M. grisescens had the lowest mean P.
destructans load of all species sampled (−4.89 ± 0.075
log10 ng). Infection prevalence varied among species,
with large-bodied species, such as E. fuscus and M.
grisescens, experiencing the lowest prevalence on average
(Fig. 3). Fungal loads on active bats in the Southeast were
also lower than on torpid bats sampled in a separate study
in the northeastern U.S. (Table 2).
During the second season of sampling, we examined

481 bats for WNS-related fluorescence. Ultraviolet
fluorescence revealed varying degrees of damage due to
the fungus, from small pin-sized lesions to large coalescing
regions of fluorescence and infiltration corresponding with
increased pathogen loads. Only 15 bats that fluoresced
showed some signs of wing damage, varying from slight de-
pigmentation to pin holes (WDI = 1). All bats captured
during early hibernation (October and November) were
negative for UV fluorescence. The highest percent of UV-

infected bats were captured during mid-hibernation
(December 35.9%, January 29.5%). A total of 66 bats were
positive by both PCR and UV, with only two UV positives
not detected as Pd + by PCR. A total of 181 individuals
were Pd + from PCR but UV negative, whereas 232 bats
were negative for both P. destructans and UV. Bats that
were Pd + by both PCR and UV had higher fungal loads
than individuals that were determined P. destructans posi-
tive only by PCR (t200.6 = 8.83, p < 0.0001). As noted in
Zukal et al. 2016 [8], we did not observe a threshold with
which the presence of UV fluorescence corresponded to a
minimum fungal load (UV positive: range − 4.74 – −0.22
log10 ng; UV negative: range − 5.73 – 0.36 log10 ng).

Discussion
Our study demonstrates that the emergence of bats
during winter in Tennessee is not indicative of WNS,
as less than half of all bats captured outside of the caves
sampled during the hibernation period were positive for
P. destructans. Although we can only make inference dir-
ectly to bats captured outside of hibernacula in Tennessee,
we find a wide range of P. destructans loads on captured
bats. As we are not only sampling high-load individuals
leaving the hibernacula we, therefore, can assume that our
results are representative of the entire population. By
capturing bats active during winter and coupling winter
activity with measures of prevalence and load of P.
destructans on bats, we highlight the regional differences
in the responses of WNS affected species within their
greater geographic range. This study demonstrates that as
WNS continues to spread throughout North America, it

Fig. 2 Mean monthly load of Pseudogymnoascus destructans per species. Mean load (± SE) of P. destructans (Pd) per month for seven species
captured at five cave sites in Tennessee during October–April; 2012–2013 (closed circles) and 2013–2014 (open circles). Circles indicate months
where Pd positive individuals were captured
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should not be assumed that all individuals within a species
will react similarly to the disease. In the Northeast, a
secondary symptom of the disease is activity during win-
ter, specifically aberrant behavior, or bats flying during
cold weather or during daylight hours [12, 13, 26, 59].
Although, cases of unusual winter behavior have been
reported in the Southeast [37, 46], our data highlight that
nighttime emergences from hibernacula in Tennessee are
not always associated with P. destructans infection. There-
fore, the effects of WNS on bats in the southeastern U.S.
are not directly comparable to those in the North, as
regional and species-specific differences, like degree of
winter activity, body condition [60] and susceptibility to
disease [14, 36], likely vary significantly from those in the
Northeast.
Both infection prevalence and loads varied consider-

ably among species, with all small-bodied bats, except
M. leibii, having higher fungal loads and prevalence
than E. fuscus and M. grisescens. Species, such as M.
septentrionalis and P. subflavus, with high rates of fun-
gal loads and prevalence, were consistently found with
the largest regions of fluorescence and wing damage,
indicating high rates of tissue invasion by P. destructans
[48]. Whereas, M. grisescens, which have low fungal
loads and prevalence, were often found with substantial
discoloration, wing damage, and tissue loss unrelated to
WNS based on negative UV and PCR results, as well as
WNS WDI scoring [48, 61]. According to survey re-
cords in Tennessee, M. grisescens was often observed
with discolored wing membranes and significant scar-
ring and tissue loss prior to P. destructans North

American introduction (John Lamb and Troy Best, per-
sonal communication).
Although transmission of P. destructans among indi-

viduals could be associated with the accumulation of
the fungus within a hibernaculum based on the time
since initial introduction, number of bats, and internal
cave conditions, it is important to also consider species
specific biology and behaviors. When the Northeast
was the leading edge of WNS infection, small, solitary
bats, such as M. septentrionalis and P. subflavus, had
significantly higher fungal loads than similar sized colo-
nial species [11, 28, 41], suggesting P. destructans was
spreading via density-dependent transmission in these
two species as cluster size increased [14]. In contrast,
our findings suggest that M. sodalis and M. lucifugus,
species known to cluster in tight aggregations during
hibernation, had fungal loads and prevalence similar to
those of solitary species. Therefore, transmission of P.
destructans among more colonial species in southern
hibernacula may be a function of the frequency, or rate,
of infection among individuals within the cluster, rather
than the cluster size [14, 34, 62]. Interestingly, M. grises-
cens, the largest bat that hibernates exclusively in caves in
the Midwest and southeastern U.S., had the lowest fungal
loads and prevalence of P. destructans among all species
sampled (Figs. 2 and 3). This finding contrasts with pat-
terns observed in Europe, where M. myotis and other large
bodied hibernating bats have the highest incidence of P.
destructans [8, 35, 63]. In the Northeast, disease impacts
on M. lucifugus, M. septentrionalis and P. subflavus in-
creased with higher humidity and temperature within

Fig. 3 Infection prevalence of Pseudogymnoascus destructans on active bats captured in Tennessee. Infection prevalence (# infected individuals/
total # individuals sampled) of Pseudogymnoascus destructans (± SE) for seven bat species captured at five hibernacula in Tennessee during
winters 2012–2013 (closed circles) and 2013–2014 (open circles)
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roosts, such that individuals sampled in the coldest and
driest roosts had significantly lower fungal loads [14, 27].
Myotis grisescens, however, hibernate in aggregations of
100,000 to 1,500,000 individuals [64] in cold air traps vary-
ing from 1 to 9 °C [65], which are the lowest temperatures
at which P. destructans growth occurs [66]. As of spring
2017, M. grisescens have yet to experience any WNS-
related declines and their populations appear to have
remained stable within Tennessee. Although some M. gri-
sescens that we captured have been identified with second-
ary fungal infections, skin discoloration, and/or substantial
tissue loss [Bernard unpublished data, John Lamb and
Troy Best personal communication], we have yet to iden-
tify how the species is surviving WNS. Several behavioral
traits, such as preferred microclimates within hibernacula,
sustained activity and foraging throughout winter [37] and
year-round cave use [67, 68], may enable this species to
prevent or minimize the colonization of P. destructans
during torpor.
When all seven species with samples sizes ≥12 individ-

uals were combined, mean fungal load was highest during
mid-hibernation, December through February, the coldest
period of the year in the Southeast. Perimyotis subflavus,
however, continued to experience an increase in fungal
load through the end of hibernation, which could be
attributed to the microclimate (11 to 23 °C; ≥ 80% Rela-
tive Humidity) used by the species during hibernation
[69–71]. Alternatively, in vitro growth curves suggest
that P. destructans may reproduce more quickly in cave
environments that maintain more moderate temperatures
of 10 to 15 °C in winter [66], which could result in in-
creased growth rates of the fungus in southern hibernac-
ula, and therefore lead to a peak in fungal load within
species hibernating within that temperature range.
Contrary to our prediction and the findings of studies

from northern hibernacula [69], both pathogen load
and prevalence were lower in the second year of the
study for seven of the ten bat species captured [58]. By
the second survey year, all caves had been contami-
nated by P. destructans for at least two years. Although
this could be due to the decrease in the capture of
highly susceptible species (Table 1) caused by WNS re-
lated declines within each cave [72], climatic variation
between years could also impact disease spread. Similar
trends have been documented after the arrival of Batra-
chochytrium dendrobatidis, the pathogenic fungal agent
of chytridiomycosis in frogs. Pathogen loads in naïve
frog populations increased dramatically in the first year,
causing a rapid rise in infection intensity and preva-
lence in densely populated habitats [73]. As the patho-
gen load on infected frogs increased, many populations
suffered from high rates of mortality. However, the sur-
vival of infected individuals led to pathogen endemism
and population persistence on the frogs. A similar

dynamic may be occurring in hibernacula contaminated
by P. destructans [74, 75]. Individuals with high pathogen
loads perish in the first year, perhaps allowing for individ-
uals with minor P. destructans infections to return to the
hibernacula the following winter. Further, some scientists
hypothesize that increased incidences of chytridiomycosis
are linked to increases in global temperatures creating op-
timal sites for the pathogen [76, 77]. Similar responses
may occur with WNS if regions of the Southeast experi-
ence more extreme winters, creating more favorable con-
ditions for P. destructans growth or limited opportunities
for bats to replenish fat stores. Repeated low-level expos-
ure to P. destructans or endemism of the pathogen, mild
winters, and episodic feeding may allow for persistence of
bat populations hibernating in the Southeast.
Recent evidence from the Northeast suggests some pop-

ulations of bats have the ability to persist and reproduce
despite continued exposure to WNS [42, 75, 78, 79]. Com-
paring P. destructans loads on the same species sampled
while torpid in the Northeastern and active in the South-
eastern U.S., we find the average fungal loads over the sea-
son were consistently lower on active bats (Table 2).
Eptesicus fuscus and M. lucifugus captured in Tennessee
had lower loads than those sampled in northeastern hiber-
nacula, whereas fungal loads on M. septentrionalis and M.
sodalis were similar towards the beginning and end of
hibernation. Perimyotis subflavus in the Northeast, how-
ever, had higher loads than individuals sampled in the
Southeast. Meaningful direct comparisons are lacking due
to insufficient numbers sampled in the Northeast. Ultim-
ately, we are seeing that Pd + bats captured in Tennessee
have similar loads to torpid individuals sampled in more
northern areas of their range, indicating that activity and
survival in the Southeast may be more closely linked
with short, mild winters and moderate prey levels
during winter.

Conclusions
The depopulation of naïve bat hosts by WNS will likely
lead to chronic population depression [2] due to the
long-term persistence of P. destructans within cave
environments. Whereas, mortality in the Northeast can
reach 90% within two years of WNS confirmation [12, 13],
population declines likely attributed to WNS in the
Southeast occur four to five years after confirmation
and tend to be less severe in some species [26, 27, 40, 80].
Our findings support the hypothesis that emergence from
caves during winter may influence the variation seen in
pathogen load and infection intensity among species. By
understanding the species-specific dynamics of P. destruc-
tans within active winter populations, management strat-
egies, such as regional area closures and bio-control
treatments can be implemented more effectively. In the
Southeast, mitigation measures, such as cave area closures
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used to minimize external cave disturbances (e.g. Great
Smoky Mountains National Park) or bio-control agents
(e.g. Rhodococcus rhodochrous [81] and chitosan), may
work best when targeting hibernacula with small-bodied
bats such as M. lucifugus, M. septentrionalis, and P. sub-
flavus; species that are being hit the hardest by WNS in
the Southeast [80, 61]. Finally, our study suggests that
populations of some bats are persisting regardless of re-
peated exposure to P. destructans. Although the region is
currently experiencing WNS-related mortality within
highly affected species, mild temperatures and the persist-
ent availability of prey during winter may allow the South-
east to serve as a refuge for surviving bat populations.

Additional file

Additional file 1: Figure S1. Peak load of P. destructans on bats
captured leaving hibernacula. Maximum monthly load of P. destructans
for seven species captured at five cave sites in Tennessee during the
2012–2013 and 2013–2014 hibernation period (October–April). Circles
indicate months where Pd positive individuals were captured. Species
acronym codes: EPFU – Eptesicus fuscus, MYGR – Myotis grisescens, MYLE
– Myotis leibii, MYLU – Myotis lucifugus, MYSE – Myotis septentrionalis,
MYSO – Myotis sodalis, PESU – Perimyotis subflavus. (PNG 264 kb)
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