RESEARCH

New insights into phylogenetic relationships of Rhabdocoela (Platyhelminthes) including members of Mariplanellida

Íñigo Vicente-Hernández¹, Werner Armonies², Katharina Henze¹ and M. Teresa Aguado^{1*}

Abstract

Background Previous flatworm phylogenetic research has been carried out analysing 18S and 28S DNA markers. Through this methodology, Mariplanellinae subfamily has been recently re-classified as Mariplanellida status novus. This new classification implied that 3 genera belonged to Mariplanellida: *Mariplanella, Lonchoplanella* and *Poseidoplanella*. In this study, we aim to clarify some of the relationships within Rhabdocoela analysing 18S and 28S DNA markers of a total of 91 species through Maximum Likelihood and Bayesian Inference methodologies. A total of 11 species and genera, including *Lonchoplanella*, from the island of Sylt are included and had not previously been involved in any molecular phylogenetic analyses.

Results Our phylogenetic results support Mariplanellida as an independent group within Rhabdocoela and its status as an infraorder. Our study suggests that *Lonchoplanella axi* belongs to Mariplanellida. Within Rhabdocoela, *Haloplanella longatuba* is nested within Thalassotyphloplanida, instead of Limnotyphloplanida. Within Kalyptorhynchia, the taxon Eukalyptorhynchia turned out to be paraphyletic including members of Schizorhynchia. These results also support the position of the genus *Toia* separate from Cicerinidae.

Conclusions Lonchoplanella axi belongs to Mariplanellida, whose status as infraorder is herein confirmed. The genus *Toia* belongs separate from Cicerinidae. Further research is needed to clarify the phylogenetic relationships of *Hoploplanella*. Most of the species, genera and families included in this study with more than one terminal are monophyletic and well supported. Adding gene markers and complementary morphological studies will help to clarify those relationships that remain uncertain.

Keywords Flatworms, Phylogeny, Free-living Platyhelminthes, Maximum likelihood, Bayesian Inference, 18S, 28S, Kalyptorhynchia

*Correspondence:

M. Teresa Aguado

aguadomolina@uni-goettingen.de

¹ Animal Evolution & Biodiversity, Georg-August-Universität Göttingen, 37073 Göttingen, Germany

² Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wattenmeerstation Sylt, Hafenstr. 43, 25992 List, Germany

Background

Flatworms are a large group in terms of diversity, with more than 26,500 described species [1, 2]. Most of them are parasitic, while around 6500 species of them are "free-living Platyhelminthes". The parasitic flatworms, Neodermata (comprising Trematoda, Monogenea, and Cestoda), are a well-defined and supported clade characterized by a syncytial, nonciliated epidermis whose nuclei-bearing parts lie sunken below the musculature. The rest of platyhelminthes are mostly free-living but also

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

symbiotic flatworms, also known as turbellarians (noncladistic group); most of them with a ciliated, cellular epidermis [3].

The free living Rhabdocoela and Proseriata are the two most diverse microturbellarian orders, which, in recent phylogenetic hypotheses, are basally branching within Euneoophora [4] (Sup. Figure 1). Proseriata has above 400 described species [5], and Rhabdocoela, has about 1530 described species [6]. Nevertheless, these numbers represent a scarce amount of the estimated total number of microturbellarian species present on Earth, which was estimated to be around 44.000 by Armonies [7]. Further research is needed in order to record their diversity more accurately [8].

Proseriata, is a monophyletic order [9]; based on morphological traits Sopott-Ehlers [10] divided it into Unguiphora (taxa without cirrus and a statocyst but with pigment in the mantle cells of rhabdomeric receptors) and Lithophora (statocyst present and no pigment in the mantle cells). Later the monophyly of both clades was confirmed [9, 11]), though with some dispute in the Unguiphora as it was underrepresented in the studies supporting its monophyly and appears to be paraphyletic in others [11, 12]). Within Proseriata, the position of the genus *Ciliopharyngiella* Ax, 1952 has been recently debated. Curini-Galletti et al. [11] suggested that it belongs inside Proseriata clustered with Unguiphora, while Van Steenkiste & Leander [13] suggested *Ciliopharyngiella* being the sister lineage of Proseriata.

Rhabdocoela is a monophyletic order [9] of free-living Platyhelminthes, traditionally subdivided into two major groups: Kalyptorhynchia and Dalytyphloplanida, with and without an anterior proboscis, respectively. Within Rhabdocoela, the family Mariplanellidae was initially included in Dalytyphloplanida though not fully fitting with the diagnostic characters. Recently, Steenkiste & Leander [13] re-classified the subfamily Mariplanellinae to Mariplanellida status novus, representing the monophyletic group sister to a large clade comprising Kalyptorhynchia and Dalytyphloplanida. According to this classification, Mariplanellidae (the only family of Mariplanellida) currently comprises three genera: Mariplanella Ax & Heller, 1970, Lonchoplanella Ehlers, 1974, and Poseidoplanella Willems et al., 2005. Morphologically, these genera share the characters single ovary and a double connection in the female reproductive system. However, the phylogenetic analyses by Van Steenkiste and Leander [13] only included two species of Mariplanella, M. piscadera Van Steenkiste & Leander, 2022 and M. frisia Ax & Heller, 1970, while members of Lonchoplanella and Poseidoplanella have not been included in any molecular phylogenetic analysis up to date.

Results

Trees obtained from independent Maximum Likelihood (ML) analyses of single markers (18S, 28S), as well as the one obtained from the analyses of the concatenated data matrix (18S+28S) showed congruent results (SFig. 2, SFig. 3 and Fig. 1, respectively). The concatenated data matrix (18S+28S) run through Bayesian Inference (BI) yielded highly congruent results (SFig. 4) with practically the same tree topology and high support values. The trees were rooted in *Ciliopharyngiella constricta* Martens & Schockaert, 1981, excepting the tree of 28S which was rooted in Proseriata.

In the ML concatenated analysis (Fig. 1), the taxon Proseriata is not well supported (68 B, where B represents bootstrap support values). Within Proseriata, Unguiphora (excepting *Nematoplana* sp.) and Lithophora are monophyletic and well supported (99B and 80B, respectively). Within Unguiphora, both *Nematoplana coelogynoporoides* Meixner, 1938 are in a monophyletic group; however, *Nematoplana* sp. is sister to Lithophora. The genus *Polystyphora* Ax, 1958, represented by three species, is monophyletic. Lithophora is subdivided into Otoplanidae and Monocelididae (100 B), and Coelogynoporidae and Calviriidae (100 B), respectively, as sister groups.

Rhabdocoela is well supported (100 B). Within Rhabdocoela, the three clades, Mariplanellida, Dalytyphloplanida and Kalyptorhynchia, are strongly supported (100 B). Mariplanellida is sister to Dalytyphloplanida and Kalyptorhynchia, which are joined in a not highly supported clade (69 B). In the concatenated analysis (Fig. 1), the species Lonchoplanella axi is located within Mariplanellida, sister to M. axi (86 B), showing the genus Mariplanella, as currently delineated, as paraphyletic. The 18S tree (SFig. 2) shows Mariplanella as monophyletic but is not supported (61 B) with Lonchoplanella axi as its sister group. Within Dalytyphloplanida, Neodalyellida, Limnotyphloplanida (excepting Haloplanella longatuba Ax & Heller, 1970) and Thalassotyphloplanida are monophyletic and, excepting the latter, well supported (100 B, 100 B, 96 B, and 84 B, respectively). Limnotyphloplanida and Thalassotyphloplanida are sister to each other (100B). The species Haloplanella longatuba is located within Thalassotyphloplanida, out of the Limnotyphloplanida.

Within Kalyptorhynchia, Eukalyptorhynchia is paraphyletic, including Schizorhynchia. The genus *Toia* Markus, 1952 is located as the sister group of a large clade (100 B) containing the rest of Eukalyptorhynchia (83 B) and Schizorhynchia, which is not supported (48B). These two latter groups are better supported in the BI analisis (SFig. 4) with a posterior probability value of 1. The family Cheliplanidae appears to be paraphyletic (100 B) with *Cheliplanilla caudata* Meixner 1938 being the

Fig. 1 ML phylogenetic tree inferred from the concatenated data set (185+285). Species provided by this study in red. Bootstrap support values under/beside nodes. Values below 70% not represented

sister taxon of a group compromised by *Carcharodorhynchus* Meixner, 1938 and Schizorhynchidae, represented by more than one species, and also well supported (100 B). The genera *Carchadorhynchus*, *Schizochilus* Boaden, 1963 and *Proschizorhynchus* Meixner, 1928, and *Psammorhynchus tubulipenis* Meixner, 1938, including more than one terminal, are respectively monophyletic, though herein represented by few species.

Discussion

Our results show Mariplanellida as an independent group within Rhabdocoela as found by Van Steenkiste & Leander [13], and previously suggested by other molecular analyses [9]. Its higher-level status as an additional infraorder proposed by Van Steenkiste & Leander [13] within Rhabdocoela is supported herein as well. Our study included Lonchoplanella axi, a genus and species not incorporated before in a molecular phylogeny. Lonchoplanella axi shares a number of conspicuous characters with Mariplanella frisia, including two types of adenal rhabdites (needle-shaped and elongate viscous) and a muscular copulatory bursa with a sclerotized basal membrane [13] and had been described as a member of Mariplanellidae [14]. The topology of the concatenated tree confirms Lonchoplanella axi as belonging to the Mariplanellidae family and Mariplanellida infraorder. More information (terminals and markers) is needed to clarify the monophyly of both genera, and further analyses including Poseidoplanella halleti Willems et al., 2005 (presumably the only missing taxon of Mariplanellidae) will clarify the relationships between the three genera.

Our study included six new terminals and five species of Kalyptorhynchia in addition to those included by Van Steenkiste & Leander [13]. Results corroborate Eukalyptorhynchia as non-monophyletic supporting Willems et al. [9] and Tessens et al. [15] results. Our results also support the position of the genus *Toia* separate from Cicerinidae, as suggested by Tessens, et al. [15]. The rest of Cicerinidae are monophyletic and the sister group of Schizorhynchia. Cicerinidae (except *Toia*) were located in a polytomy with Schizorhynchia and most members of Eukalyptorhynchia in the analysis of Van Steenkiste & Leander [13].

Most of the species, genera and families included in this study with more than one terminal are monophyletic and well supported. However, the terminals *Nematoplana* sp. and *Haloplanella longatuba* need further consideration. Within Proseriata, *Nematoplana* sp. (downloaded from GenBank) is not closely related to *N. coelogynoporoides;* its sister relationship to Lithophora might indicate that this terminal could have been misidentified or the result of contamination in the 18S sequence. Additionally, the length of branches of *Nematoplana coelogynoporoides* from Sylt (included herein) and *N. coelogynoporoides* from Roscoff (down-loaded from GenBank) might indicate they are not be the same species.

In Rhabdocoela, Haloplanella longatuba is one of the species we incorporate in a phylogenetic analysis for the first time with molecular information. The relationships of brackish and marine water Typhloplanidae species, such as Haloplanella longatuba have been previously discussed [6, 16, 17]. Rieger [16] describes the resemblance between certain genera in the family Typhloplanidae (Limnotyphloplanida parvorder) and various genera in the Thalassotyphloplanida parvorder, thus encouraging future reorganizations within these taxonomic groups. Hochberg & Cannon [17] remarks on the presence of an unusual character in some genera of the Typhloplanidae family, such as Haloplanella Luther, 1946 and Pratoplana Ax 1960, where a stylet is present in the copulatory apparatus instead of a cirrus, which is one of the family's ground pattern traits. Moreover, several similarities between this species and members of Thalassotyphloplanida have been found, such as the female genital canal and the proboscis structure. Van Steenkiste et al. [6] already suggested that several brackish water and marine Typhloplanidae taxa might be closely related to Byrsophlebidae (Thalassotyphloplanida). Our results show Haloplanella longatuba nested within Thalassotyphloplanida, which supports that the position of this taxon has to be taken into further consideration, and revised in future studies.

In this study, the selected gene markers, 18S and 28S were used because they are already available for a large number of species and have been previously found useful to discern phylogenetic relationships within Proseriata and Rhabdocoela [13]. Nevertheless, Next Generation Sequencing (NGS) techniques will be undoubtedly useful to discern and clarify the evolution of these groups.

Conclusions

Our results support the infraorder Mariplanellida as an independent group within Rhabdocoela and confirms, by the first time with molecular data, that *Lonchoplanella axi* belongs to Mariplanellida. Eukalyptorhynchia is paraphyletic including members of Schizorhynchia, and the genus *Toia* separate from Cicerinidae. *Haloplanella longatuba* is herein nested within Thalassotyphloplanida, and not in Typhloplanidae (Limnotyphloplanida), which suggests that further studies are needed to clarify its phylogenetic relationships.

More terminals and information from morphological studies, as well as new markers of NGS techniques may clarify the gaps and the still doubtful relationships.

Table 1 Terminals included, genes and GenBank Accession numbers. Species provided by this study are represented in bold

	185	285	Location
 PROSERIATA			
Ciliopharyngiella constricta	AY775754	-	Belgium: Oostende, Mariakerke
Nematoplana coelogynoporoides	KJ682383	KJ682445	France: Roscoff
Nematoplana sp.	AJ270160	AJ270175	Australia:Shelly River, Queensland
Nematoplana coelogynoporoides	OP604379		Germany: Sylt
Polystyliphora novaehollandiae	AJ270161	AJ270177	Unknown
Parotoplana renatae	AJ012517	AJ270176	Unknown
Calviria solaris	AJ270153	AJ270168	Unknown
Coelogynopora gynocotyla	AJ243679	AJ270170	Unknown
Monocelis longistyla	KR364618	KR364663	Italy: La Maddalena, Sardinia
RHABDOCOELA			
Mariplanellida status novus			
Mariplanella frisia	AJ012514	_	Germany: Sylt
Mariplanella frisia	OP604380	OP604370	Germany: Sylt
Lonchoplanella axi	OP604381	OP604369	Germany: Sylt
Marinlanella piscadera sp. nov	OM339545	OM339542	Curacao
Kalvptorhynchia	011.507015	011000012	calacat
Toia sp 1	OM339546	OM339543	Canada
Toia sp 2	OM339547	OM339544	Canada
Toja vcja	KC869828	KC869881	Unknown
Cheliplanilla caudata	K 1887449	K 1887502	Sweden: Tiörn
Carcharodorhynchus listensis	OP604377	OP604363	Germany: Svlt
Carcharodorhynchus flavidus	K 1887457	K 1887563	Spain: Lanzarote Orzola
Cystiplana paradoxa		OP604368	Germany: Sylt
Proschizorhynchus aullmarensis	OP604375	OP604364	Germany: Sylt
Proschizorhynchus tricingulatus	K 1887423	K 1887503	Spain: Lanzarote Caleton Blanco
Marirhynchus Ionaasaeta	OP604374	OP604367	Germany: Sylt
Schizochilus caecus	OP604376	OP604365	Germany: Sylt
Schizochilus sp	KB339044	KB339059	LISA: Emerald Isle Site
Schizorhynchoides aculeatus	OP604378	OP604366	Germany: Sylt
	K 1887448	K 1887534	Germany: Sylt
Acrumena massiliensis	K 1887/117	K 1887509	Italy: Sardinia
Cicarina tatradactula	K 1887465	K 1887520	Swodon: Sandhammar
Ptyalochypchus coacus	K 1887/16	K 1887550	Bolgium: Ostond
Placorbunchus dimorphis	KJ007410	K 1007507	Eipland: Työrminna
Zoporhynchus twaarminpansis	K 1887455	K 1887516	Finland: Hopriksborg
Custinley avi	K 1887/137	K 1887540	Italy: Sardinia
Koipoaladius sinansis	ME442150	ME442174	Chipa
Roinogiaalus sinensis	IVIF445159	IVIF445174	Unknown
Rhinolasias amorticas	00604373	10100034401	Correspond Sult
Psammorhynchus tubulinenis	V 1007/20	 V 1007561	Cormony: Sult
Co ath a rhun ah ua in arrain	NJ007430	KJ007501	Germany: Sylt
Gnathornynchus inernis	KJ887402	KJ887524	Germany: Sylt
Brachymyncholdes inplositylis	KJ887399	KJ887558	Italy: Sardinia
	KJ887442	KJ887527	Italy: Sardinia
Limipolycystis wandergi	KJ887407	KJ887491	Italy: Sardinia
ы unetornyncnus microstylls	KJ88/468	KJ887494	France: Banyuis-sur-Mer
Lugenopolycysus manaelai	NJ007441	NJ007540	South Africa: ISIMangaliso NP
Prioriornyrichelia olarcuata	NJ007447	NJ00/540	Sweden: Kattegat
Gailornynchus meaiterraneus	KJ88/428	KJ88/496	italy: Sardinia

Table 1 (continued)

	18S	285	Location
Gyratrix proaviformis	KJ887430	KJ887565	Italy: Sardinia
Scanorhynchus forcipatus	KJ887412	KJ887556	Sweden: Kattegat
Opisthocystis goettei	KJ887445	KJ887559	USA: Alabama
Progyrator mamertinus	KJ887401	KJ887493	Italy: Sardinia, Carlotto
Austrorhynchus bruneti	KJ887405	KJ887498	France: Banyuls-sur-mer
Rogneda reticulata	KJ887479	KJ887529	France: Cerbere
Acrorhynchides robustus	KJ887458	KJ887517	Germany: Sylt
Paulodora drepanophora	KJ887482	KJ887544	South Africa: iSimangaliso NP
Dalytyphloplanida			
<i>Kytorhynchidae</i> sp. 1	KC529401	KC529527	Unknown
Kytorhynchus sp.	KC529400	KC529526	Unknown
Coronhelmis multispinosus	KC529427	KC529555	Unknown
Cilionema hawaiiensis	KC529428	KC529556	Unknown
Parapharyngiella sp.	KC529405	KC529531	Unknown
Ptychopera japonica	MF321751	MF321760	Unknown
Trigonostomum venenosum	KC529417	KC529543	Unknown
Ceratopera gracilis	KC529422	KC529549	Unknown
Beklemischeviella angustior	KC529412	KC529538	Unknown
Proxenetes quinquespinosus	KC529406	KC529532	Unknown
Promesostoma caligulatum	KC529432	KC529560	Unknown
Microvahine corallicola	KC529423	KC529550	Unknown
Thalassoplanella collaris	KC529483	KC529614	Unknown
Brinkmanniella palmata	KC529424	KC529553	Unknown
Halammovortex sp.	KC529437	KC529567	Unknown
Haloplanella longatuba	OP604372	OP604371	Germany: Sylt
Scutariella sinensis	MF773690	MF773687	China
Temnosewellia minor	AY157183	AY157164	Australia
Castrella truncate	KC529439	KC529570	Unknown
Gieysztoria rubra	KC529480	KC529611	Unknown
Pseudodalyellia alabamensis	KC529440	KC529571	Unknown
Dalyellia viridis	KC529444	KC529575	Unknown
Microdalyellia fusca	KC529453	KC529584	Unknown
Acrochordonoposthia conica	KC529487	KC529617	Unknown
Opistomum arsenii	KC529491	KC529620	Unknown
Typhloplana viridata	KC529484	KC529615	Unknown
Bryoplana xerophila	KC529489	KC529619	Unknown
Phaenocora foliacea	KC529492	KC529621	Unknown
Strongylostoma radiatum	KC529485	KC529616	Unknown
Adenopharynx mitrabursalis	KC529520	KC529641	Unknown
Wahlia macrostylifera	KC529518	KC529639	Unknown
Tamanawas kalipis	MH337259	MH337262	Canada: British Columbia
Bresslauilla relicta	KC869832	KC869885	Unknown
Balgetia semicirculifera	KC529503	KC529628	Unknown
Pogaina sinensis	MK509001	MK509007	Unknown
- Baicalellia canadensis	KC869833	KC869886	Unknown

Material and methods

In this study we aim to provide a more robust phylogenetic hypothesis of Rhabdocoela relationships. For this purpose, we introduced the species *Lonchoplanella axi* to phylogenetic analyses to test whether or not it belongs to *Mariplanellida*. With respect to Kalyptorhynchia and Dalytyphloplanida we added species of *Cystiplana* Karling, 1964, *Haloplanella, Marirhynchus* Schilke, 1970, *Lonchoplanella*, and *Schizorhynchoides* Meixner, 1928 (Table 1).

Sampling and species identification

A total of 37 samples were taken during two days sampling from intertidal sand in the island of Sylt, Germany. Samples were obtained by digging on the substrate with a 10 cm long shovel. The substrate was kept in zip bags and stored in fridges at 4°C.

Sampling sites were the beach besides List Harbour (55.015337N, 8.435999E) and the beach in front of Alfred-Wegener-Institute building (55.023745, 8.439049), always during low tide. The collected sediment samples were all coarse sand enriched with variable amounts of organic material. Meiofauna was separated from the sediment using the MgCl₂ decantation method [18].

Flatworms were morphologically identified under Leica S APO stereomicroscope and Leica DM 2500 microscope and photographed (stylets) under a portable Leica MC 190 HD attached camera (Fig. 2).

Fig. 2 Close–up picture of the copulatory organs, stylets belonging to the identified species from Sylt. Pharynx rosulatus (p), stylet (st), testis (t), vesicula seminaris (sv), prostate vesicle (pv), genital atrium (ga), glandular organ (gl), copulatory organ (co). A. *Marirhynchus longasaeta*; B. *Mariplanella frisia*; C. *Carcharodorhynchus listensis*; D. *Proschizorhynchus gullmarensis*; E. *Psammorhynchus tubulipenis*; F. *Cystiplana paradoxa*; G. *Schizorhynchoides aculeatus*; H. *Schizochilus caecus*; I. *Haloplanella longatuba*. J. *Lonchoplanella axi*

DNA extraction, amplification and sequencing

For the DNA extraction the DNeasy[®] Blood & Tissue Kit (QIAGEN) was used. Manufacturer's instructions were followed, with the exception that DNA was eluted in 60μ L of preheated AE elution buffer (60 °C). For samples with low concentration, this protocol was followed by the Amplification of purified genomic DNA protocol from QIAGEN REPLI-g[®] kit. Thermocycling conditions and primers from Van Steenkiste & Leander [13] were used to sequence markers 18S and 28S (see supplementary material, S1). Sequencing was carried out by Eurofins Genomics (Konstanz, Germany). All new sequences were deposited in GenBank, and sequence accession numbers are provided in Table 1.

Phylogenetic analyses

Once the sequences were obtained, they were blasted using blastn through ncbi-blast+v.2.12.0 to confirm that platyhelminthes' DNA was amplified during the PCRs. The rest of the sequences were obtained from GenBank attempting to gather a broad representation of the different families and subfamilies. Those terminals for which both markers (18S and 28S) were available were selected for this study. Several terminals of Proseriata, including *Ciliopharyngiella constricta* were also included to root the tree.

Sequences were visually checked in Geneious v10.2.3 and aligned using MAFFT v.7.305b [19] using the iterative refinement method E-INSI. Single genes (18S, 28S) were concatenated using FASconCAT-G [20, 21]. The maximum likelihood (ML) analysis of the single markers, as well as the concatenated matrix was performed through IQtree v.1.3.11.1 [22, 23], with best fitting models selected by Modelfinder [24] (18S: GTR + F + I + G4; 28S: GTR + F + I + G4). In all analyses, each partition was allowed to have its own set of branch lengths. (-spp option). Support values were estimated based on 1000 bootstrap pseudo replicates (B). iTol v.6. and Adobe Illustrator (2020) were used to edit the phylogenetic trees. The concatenated matrix (18S+28S) was also analysed through Bayesian inference (BI). For BI analyses, two independent runs of 1,342,000 generations and four chains, each (one cold, three heated) were run in MrBayes 3.2.7 [25]. The most similar models available in MrBayes (-mset option) to those selected by Modelfinder for each partition were applied. All parameters were unlinked, rates were allowed to vary freely over partitions andtrees were sampled every 1000 generations. The runs were stopped when the standard deviation reached the value of 0,007. After discarding 25% first trees as burn-in, trees from the stationary phase were combined to obtain a majority rule consensus and posterior node probabilities [26].

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s40850-023-00171-y.

Additional file 1: S1. Supplementary table 1

Additional file 2: SFig. 1. Phylogenetic relationships between the mayor clades of Platyhelminthes phylum (retrieved from Laumer & Giribet, 2014).

Additional file 3: SFig. 2. ML phylogenetic tree inferred from 18S gene. Species provided by this study in red. Bootstrap support values under / beside nodes. Values below 70% not represented.

Additional file 4: SFig. 3. ML phylogenetic tree inferred from 28S gene. Species provided by this study in red. Bootstrap support values under / beside nodes. Values below 70% not represented.

Additional file 5: SFig. 4. Majority rule consensus tree from BI analysis obtained from the concatenated data set (18S+28S). Posterior probability support values close to each node.

Additional file 6. Supplementary figure legends

Acknowledgements

We would like to acknowledge Conrad Helm, Leonard Spohr and Christoph Bleidorn (Georg August University, Göttingen) for their help during the field trips, sorting samples and support to conduct this study. We are also grateful to the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wattenmeerstation Sylt for hosting us during our sampling trips.

Authors' contributions

MTA and IVH completed the sampling. Species identification was carried out by IVH with the bold collaboration of WA and MTA. DNA extraction and PCRs were performed by KH and IVH. Data preparation and phylogenetic analysis was carried out by IVH with the supervision of MTA and, the manuscript was written by IVH and MTA.

Funding

Open Access funding enabled and organized by Projekt DEAL. This study was financed by the Biodiversitätsmuseum Göttingen (PI:MTA).

Availability of data and materials

The data generated during and/or analyzed during the current study are available in GenBank. Accession numbers are displayed in Table 1.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 21 November 2022 Accepted: 29 June 2023 Published online: 11 July 2023

References

- Caira JN, Littlewood DTJ. Worms, Platyhelminthes. Encyclopedia of Biodiversity. 2013:437–69. https://doi.org/10.1016/b978-0-12-384719-5. 00166-0.
- Tyler S, Schilling S, Hooge M, Bush LF. Turbellarian taxonomic database. Version 2.0. 2006–2022. http://turbellaria.umaine.edu. Accessed 07 Jan 2022.
- Tyler S, Hooge M. Comparative morphology of the body wall in flatworms (Platyhelminthes). Can J Zool. 2004;82(2):194–210. https://doi.org/10.1139/ z03-222.

- Laumer CE, Giribet G. Inclusive taxon sampling suggests a single, stepwise origin of ectolecithality in Platyhelminthes. Biol J Lin Soc. 2014;111(3):570–88. https://doi.org/10.1111/bij.12236.
- WoRMS Editorial Board (2022). World Register of Marine Species. Available from https://www.marinespecies.org at VLIZ. Accessed 2022–07–01. https://doi.org/10.14284/170.
- Van Steenkiste N, Tessens B, Willems W, Backeljau T, Jondelius U, Artois T. A Comprehensive Molecular Phylogeny of Dalytyphloplanida (Platyhelminthes: Rhabdocoela) Reveals Multiple Escapes from the Marine Environment and Origins of Symbiotic Relationships. PLoS ONE. 2013;8(3). https://doi.org/10.1371/journal.pone.0059917.
- Armonies W. Uncharted biodiversity in the marine benthos: The void of the smallish with description of ten new Platyhelminth taxa from the well-studied North Sea. Helgoland Marine Research. 2018;72(1). https:// doi.org/10.1186/s10152-018-0520-8.
- Schockaert ER, Hooge M, Sluys R, Schilling S, Tyler S, Artois T. Global diversity of free living flatworms (Platyhelminthes, "Turbellaria") in freshwater. Hydrobiologia. 2008;595(1):41–8. https://doi.org/10.1007/ s10750-007-9002-8.
- Willems WR, Wallberg A, Jondelius U, Littlewood DTJ, Backeljau T,Schockaert ER, Artois TJ. Filling a gap in the phylogeny offlatworms: relationships within the Rhabdocoela (Platyhelminthes), inferred from 18S ribosomal DNA sequences. Zoologica Scripta. 2006;35:1–17.
- Sopott-Ehlers B. The phylogenetic relationships within the Seriata (Platyhelminthes). In: Conway Morris S, George DJ, Gibson R, Platt HM, editors. The origin and relationships of lower invertebrates. Oxford: Oxford University Press; 1985. p. 159–67.
- Curini-Galletti M, Webster BL, Huyse T, Casu M, Schockaert ER, Artois TJ, Littlewood DTJ. New insights on the phylogenetic relationships of the Proseriata (Platyhelminthes), with proposal of a new genus of the family Coelogynoporidae. Zootaxa. 2010;2537:1–18. https://doi.org/10.11646/ zootaxa.2537.1.1.
- 12. Laumer CE, Giribet G, Curini-Galletti M. Prosogynopora riseri, gen. et sp. nov., a phylogenetically problematic lithophoran proseriate (Platyhelminthes:Rhabditophora) with inverted genital pores from the New England coast. Invertebrate Systematics. 2014;28(3):309–325. https://doi.org/10.1071/IS13056.
- Van Steenkiste NWL, Leander BS. The molecular phylogenetic position of Mariplanella piscadera sp. nov. reveals a new major group of rhabdocoel flatworms: Mariplanellida status novus (Platyhelminthes: Rhabdocoela). Org Divers Evol. 2022:0123456789. https://doi.org/10.1007/ s13127-022-00542-2.
- Ehlers U. Interstitielle Typhloplanoida (Turbellaria) aus dem Litoral der Nordseeinsel Sylt. Mikrofauna des Meeresbodens, 49. vol. 102. Mainz: Akademie der Wissenschaften und der Literatur; 1974. p. 427–526. ISBN 3-515-02037-3.
- Tessens B, Janssen T, Artois T. Molecular phylogeny of Kalyptorhynchia (Rhabdocoela, Platyhelminthes) inferred from ribosomal sequence data. Zoolog Scr. 2014;43(5):519–30. https://doi.org/10.1111/zsc.12066.
- Rieger MR. A new group of Turbellaria-Typhloplanoida with a proboscis and its relationship to Kalyptorhynchia. In: Morse MP, editor. Riser NW. Mc- Graw-Hill Company: Biology of the Turbellaria. Libbie H Hyman Memorial Volume. New York; 1974. p. 23–62.
- Hochberg R, Cannon LRG. Two new freshwater rhabdocoels, Austrodalyellia gen. nov. and Haplodidymos gen. nov. (Platyhelminthes), from Queensland, Australia. Zootaxa. 2002;44(1):1. https://doi.org/10.11646/ zootaxa.44.1.1.
- Schockaert ER. The Importance of Turbellarians in Ecosystems. In: Hall GS, editor. Methods for the Examination of Organismal Diversity in Soils and Sediments. Wallingford: CAB International; 1996. p. 211–25.
- Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160–6. https://doi.org/10.1093/bib/bbx108.
- Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool. 2014;11:81. https://doi.org/10.1186/s12983-014-0081-x.
- Kück P, Meusemann K. FASconCAT: Convenient handling of data matrices. Mol Phylogenet Evol. 2010;56(3):1115–8. https://doi.org/10.1016/j.ympev. 2010.04.024.

- Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65:997–1008. https://doi.org/10.1093/sysbio/syw037.
- Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. https://doi.org/10.1093/molbev/ msu300.
- Kalyaanamoorthy S, Minh BQ, Wong T, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. https://doi.org/10.1038/nmeth.4285.
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42. https://doi.org/10.1093/sysbio/sys029.
- Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–5. https://doi.org/10.1093/bioinforma tics/17.8.754.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

