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Abstract 

Background:  Understanding the diversity of eyes is crucial to unravel how different animals use vision to interact 
with their respective environments. To date, comparative studies of eye anatomy are scarce because they often 
involve time-consuming or inefficient methods. X-ray micro-tomography (micro-CT) is a promising high-throughput 
imaging technique that enables to reconstruct the 3D anatomy of eyes, but powerful tools are needed to perform fast 
conversions of anatomical reconstructions into functional eye models.

Results:  We developed a computing method named InSegtCone to automatically segment the crystalline cones in 
the apposition compound eyes of arthropods. Here, we describe the full auto-segmentation process, showcase its 
application to three different insect compound eyes and evaluate its performance. The auto-segmentation could 
successfully label the full individual shapes of 60-80% of the crystalline cones and is about as accurate and 250 times 
faster than manual labelling of the individual cones.

Conclusions:  We believe that InSegtCone can be an important tool for peer scientists to measure the orientation, size 
and dynamics of crystalline cones, leading to the accurate optical modelling of the diversity of arthropod eyes with 
micro-CT.
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Background
Arthropods comprise more than 80% of animals living 
on the planet [20] but little is known about the diversity 
of the visual systems in this phylum [19]. Many arthro-
pods make extensive use of visual information to perform 
essential behaviours, such as locating suitable mates, 
finding food or avoiding predators [8]. To better under-
stand how these animals interact with their environment, 
it is therefore important to carry out anatomical and 
functional investigations of the myriad of arthropod eyes. 
Moreover, better understanding the eyes of arthropods 
will not only inform us about the visual ecology of these 

species, but also about fundamental aspects of animal 
vision.

Most arthropods have a pair of compound eyes consist-
ing of repeated units called ommatidia. An ommatidium 
typically consists of three elements: an external lens that 
forms a regular facet visible on the external surface of 
the eye, a crystalline cone and a rhabdom [13]. The light-
sensitive rhabdom is the ‘sensor’ unit that collects light 
provided by unique (in apposition compound eyes) or 
multiple (in superposition compound eyes) transpar-
ent ‘optics’ unit – the lens and the crystalline cone. Each 
ommatidium samples light from a small angular portion 
of the world that, once integrated, enables arthropods to 
generate detailed and colourful images across the field of 
view (FOV) of the compound eye.

To be able to resolve an object in a given light regime, 
each portion of a compound eye trades-off adequate spa-
tial resolution, determined by the acceptance angle, and 
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sufficient light capture or optical sensitivity [12]. This is 
because the anatomical limit of spatial resolution is set by 
the angular spacing of the neighbouring ommatidia – the 
inter-ommatidial (IO) angle (often referred as Δφ) – such 
that a reduction in IO angle increases resolution. On 
the contrary, optical sensitivity depends on the angular 
area over which photons are captured; a bigger IO angle 
therefore leads to better sensitivity. The optical proper-
ties of ommatidia thus typically vary across the topology 
of compound eyes to optimise resolution and/or sensi-
tivity in different parts of the FOV in a way that reflects 
the ecology of the animal. For example, the frontal region 
of the eye of the male carpenter bee Xylocopa tenuis-
capa has enlarged ommatidia with small IO angle, which 
enhances both sensitivity and resolution and probably is 
an adaptation for detecting and chasing mates [23]. Thus, 
anatomical comparisons of compound eyes across sexes, 
castes, life-stages, populations or species, provide formi-
dable opportunities to better understand the visual ecol-
ogy and behaviour of arthropods.

Exploring how the ecology of arthropods relates to 
their visual anatomy requires large-scale and detailed 
analysis of eye structures, something that is challenging 
for two major reasons. Firstly, it necessitates investiga-
tions into the inner anatomy of compound eyes, because 
properties such as the elongation axes of crystalline 
cones and the diameters and lengths of rhabdoms are 
needed for accurate calculations of optical sensitivity 
and IO angle [12]. Furthermore, these properties must 
be measured in high-resolution across the eye to obtain 
reliable topological information [27]. Traditional meth-
ods to study visual anatomy provide incomplete informa-
tion and/or are too time consuming to enable large-scale 
analyses. Imaging methods such as Transmission Elec-
tron Microscopy (TEM), a technique that is typically 
used to measure rhabdom properties, are slow and pro-
duce coarse topologies from only a few slices in each eye 
sample. The pseudopupil technique [6], which measures 
the topology of IO angle, is relatively fast but requires live 
animals and typically generates coarse resolution maps 
that do not include the full extent of the FOV [27], some-
times filtering out precious fine-scale information [2].

How can we quickly obtain fine-scale topological data, 
both on the outside and the inside of compound eyes 
that typically possess thousands of ommatidia? X-ray 
microtomography (micro-CT) is a promising method to 
generate fast (a scan typically lasts from a few minutes 
to a few hours) and accurate (with isotropic spatial reso-
lution of a micrometre or less) 3D models of an eye [3]. 
This method has the advantage of keeping the eye geom-
etry intact, unlike 2D methods that inherently lose part 
of the geometrical information through the physical sec-
tioning process. In a recent study, Taylor et al. [27] used 

micro-CT to obtain maps of the optical properties across 
the entire FOV of Bombus terrestris compound eyes in 
unprecedented detail to explore the effect of body size on 
the topological scaling of visual parameters.

Paradoxically, micro-CT generates more information 
than is currently feasible to process, in particular, it pro-
vides a high level of detail about the geometry of the crys-
talline cones and, to some extent, of the rhabdoms that 
has been left out of previous modelling approaches (e.g. 
[26, 27]). Information about the geometry of individual 
rhabdoms would enable optical sensitivity calculations, 
and measuring the orientation of crystalline cones is cru-
cial to produce accurate estimates of the visual IO angle 
over the entire eye surface [25]. This is because crystal-
line cones are often skewed relative to the surface of the 
cornea, which is visible in Fig. S1 (adapted from [27]), so 
that the topology of their viewing directions determines 
the angular spacing of neighbouring ommatidia [4, 25]. In 
other words, measurements solely based on the angular 
spacing of facets on the eye surface, called the corneal IO 
angle, generate biased estimates of resolution and FOV 
[5, 27]. This difference is particularly striking at the edges 
of the FOV, where corneal measurements of the IO angle 
often overestimate the actual visual IO angle [22, 27]. To 
address this problem, manual segmentation (or labelling) 
of each crystalline cone ‘by hand’ in volumetric analysis 
programs is an option. Unfortunately, unless it is possible 
to infer the elongation axes of the cones from their spe-
cific geometry, as is the case in fiddler crabs [2], manual 
segmentation across more than a few samples becomes 
nearly unfeasible for eyes that frequently consist of sev-
eral thousands of ommatidia. More generally, the current 
time-limiting factor of micro-CT is often not the scan-
ning itself but the volumetric analysis of the images it 
produces, particularly when segmentation is required. If 
it is to become a widespread tool for large-scale anatomi-
cal studies in arthropod vision, new methods are needed 
to automate the analysis of micro-CT scans.

In this paper, we start to bridge this gap by developing 
a computing method, InSegtCone, that segments crystal-
line cones in arthropod compound eyes with little input 
from the user, i.e. nearly automatically. Our auto-seg-
mentation method is based on an algorithm for interac-
tive segmentation [9] that automatically labels repeated 
objects after a short manual training. Here, we explore 
the functionality of InSegtCone by applying it to three 
insect species with differently shaped apposition com-
pound eyes: the Western honeybee Apis mellifera, the 
buff-tailed bumblebee Bombus terrestris, and the green-
veined white butterfly Pieris napi. We demonstrate that 
the auto-segmentation process can successfully extract 
the full shapes of 60-80% of the total number of crystal-
line cones (~ 6000). We evaluate the performance of the 
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InSegtCone and compare it to manual labelling. We then 
discuss the remaining limitations and new opportunities 
that this new technique generates.

Methods
Study animals
Micro-CT image stacks of eye samples of adult workers 
(females) of Apis mellifera (specimen: LU:3_14:AM_F_5) 
and Bombus terrestris (specimen: LU:4_16_: BT_F_
CE_10) were the same as those previously analysed in 
Taylor et al. [28], where the sample preparation and data 
acquisition method are described in detail. An adult 
female of Pieris napi was obtained from laboratory stock 
at the Department of Zoology, Stockholm University, 
Sweden.

Sample preparation
The left or right compound eyes of the bee specimens 
were dissected, fixated, stained, and embedded in epoxy 
resin according to the procedure described in Taylor 
et al. [27]. The left half head of the sample of P. napi was 
fixated for 7 days at 4 °C in a 0.5% phosphotungstic acid 
(PTA) solution (0.5 mg/mL of PTA in 70/30% ethanol/
water solution) for staining. The sample of P. napi was 
not embedded in resin but scanned directly in a 70% eth-
anol solution.

X‑ray microtomography (micro‑CT)
Micro-CT imaging of bee eyes was conducted at Dia-
mond Light Source Beamline I13-2 [17, 18], Harwell 
Science and Innovation Campus, Oxfordshire (UK, 
beamtime numbers 13848 and 16052). The voxel size of 
the bee eyes was 1.6 μm. A detailed description of the 
scanning procedure can be found in Taylor et al. [27].

The P. napi sample was scanned at the Stockholm Brain 
Imaging Center - SUBIC [11] at Stockholm University 
(Sweden) using the 3D submicron imaging system Xra-
dia Versa 520 (Zeiss, Jena, Germany). The imaging was 
performed with the X-ray source running with a voltage 
of 80 kV and a power of 7 W. A 4x optical objective was 
used, combined with the geometrical magnification, lead-
ing to an effective voxel size of 1.08 μm. The tomography 
contained 2401 projections over 360°. The exposure time 
was 1 s per projection. The projection images were then 
reconstructed automatically using the Zeiss Scout-and-
Scan software.

Volumetric segmentation of the eye and the external 
cornea
To perform the auto-segmentation of the cones, InSegt-
Cone required input labels of key eye features that were 
extracted from the reconstructed microCT images. 
The external cornea and the full eye volume of each 

compound eye were labelled by volumetric segmentation 
in Amira (FEI, Hillsboro, USA) using a method modified 
from Taylor et al. [27]. The original 32-bit images recon-
structed from the scans were cropped and re-saved in 
8-bit files in the program Drishti Paint [14]. The images 
were resampled to 4 μm voxels. The eye volume was 
labelled thanks to a combination of automatic threshold-
ing, filling of holes on each slice, shrinking and growing 
of the labelled volume, and selection of connected com-
ponents. The outer surface of the cornea was extracted 
from the eye label by manually drawing a geodesic path at 
the border of the cornea and extracting the enclosed sur-
face. The two labels were saved as volumetric images for 
later analysis in MATLAB (The MathWorks Inc., USA).

Manual segmentation of the crystalline cones
Crystalline cones were labelled manually in the full-
resolution 8-bit images using the brush tool of Amira 
across 2D slices. Care was taken to obtain a collection 
of segmented cones distributed as uniformly as possible 
across the eye. To compare with the segmentation time 
of the automatic method, the time required for a user to 
perform manual segmentation of the cones of P. napi in 
Amira was estimated.

Automatic segmentation of the crystalline cones
The schematic of the automatic segmentation (or auto-
segmentation) process of the crystalline cones called 
InSegtCone is described in Fig.  1. The process was per-
formed in MATLAB and the code is available for down-
load on Github. The main innovative aspect of the 
segmentation method consists in the unfolding of the 
original eye volume into a 2D coordinate system ref-
erenced to the external surface of the cornea. This 
simplifies the segmentation problem, as the actual tex-
ture-based segmentation [9] can then take place in two 
instead of three dimensions. To allow accurate unfolding, 
despite the variable curvature of the external surface of 
the cornea, the eye was divided into sub-regions prior to 
the unfolding. The effect of this step on the performance 
of the method was tested by independently applying the 
auto-segmentation method to the eye of A. mellifera 
divided into increasing numbers of sub-regions (1, 2, 4, 
6, 9, 12). The eye of B. terrestris (respectively P. napi) was 
divided into 12 (respectively 9) sub-regions.

The crystalline cone auto-segmentation process con-
sisted of six steps: (a) reorientation of the eye; (b) divi-
sion of the outer cornea voxels into sub-regions and 
surface modelling using polynomial fitting; (c) extrac-
tion and unfolding of a sub-volume of the data captur-
ing the crystalline cone layer; (d) auto-segmentation 
of the cones using a texture-based approach; (e) back-
transformation of the segmented labels into the original 
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space; (f ) post-processing to identify the valid cones. The 
details of each step are described below. The mathemati-
cal explanation of each step is given in the supplementary 
material.

Global alignment of the eye
In general, the position and orientation of the eye in the 
volumetric data is arbitrary, depending on how the sam-
ple was mounted during scanning. However, later steps 
of the analysis rely on the eye surface being approxi-
mately aligned with the xy-plane. Therefore, the first step 
of the analysis is to rotate the eye.

To align the eye, we used the previously segmented 
(see Volumetric segmentation of the eye and the exter-
nal cornea) volumetric images (tiffs, nifty, or any other 
image file format), where voxels labeled as cornea formed 
a point cloud that represented the surface of the eye. 
Using Principal Component Analysis (PCA), as shown in 
Fig. 1a, the eye was rotated to have the longest side (first 
principal component) aligned with the x-axis, and the 

external-to-internal (or proximodistal) direction (third 
principal component) aligned with the z-axis. This step 
allows for a more systematic procedure that facilitates 
comparison and automation by transforming the set of 
points corresponding to the label of the external surface 
of the cornea into a coordinate system called ‘PCA space’, 
(x’, y’, z’).

Division into sub‑regions, local alignment and surface 
modelling
The goal of this step is to obtain a sensible 2D coordinate 
system of the compound eye by building a 3D polynomial 
surface model for the external cornea voxels. For the eyes 
that have high curvature, such as the Pieris napi sample 
that has an almost hemispherical eye, it would be difficult 
to achieve an accurate polynomial fitting on the complete 
external cornea. We therefore divided the external sur-
face of the cornea of such highly curved eyes into sub-
regions in the ‘PCA space’. Practically, the division of the 
external surface of the cornea can be realized by defining 

Fig. 1  Outline of the process to automatically segment crystalline cones. The method is illustrated with images of Apis mellifera as an example. a 
Reorientation of the eye (volume rendering) and the labelled external cornea (red) into the ‘PCA space’. b Division of the cornea surface voxels into 
subregions (each plotted with a different colour) and modelling of each subregion using polynomial fitting in its ‘PCA space’ (top). c Extraction and 
unfolding of a subvolume of the eye data. Note that the cornea surface in the unfolded subvolume is almost flat, so that the pattern of crystalline 
cones in the cross-section is regular. d Auto-segmentation of the raw cones using a texture-based approach. The results of this step are displayed 
on one slice from the unfolded images (top) and in the whole eye subvolume (bottom). The white arrow indicates the location of a circular artefact 
that locally prevented the segmentation of a few cones. e Back-transformation of the raw auto-segmented cones into the original eye volume (3D 
rendering). f Post-processing of the raw cones labels (right subfigure) to eliminate noisy detections (red on the right subfigure) and retain valid 
cones (green on the right subfigure - left subfigure)
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a grid of 2D rectangular masks in the dimension of (x’, y’), 
with a small overlapping area at the borders of the sub-
regions, in order to avoid the loss of cones near the bor-
ders of the sub-regions in later steps.

The cornea surface in each sub-region was then locally 
aligned by preforming a PCA-based rotation as in (a). 
With the eye surface roughly aligned with the xy-plane, 
we could fit a polynomial surface z = f(x,y) to the voxels 
labelled as cornea. We chose to fit a fifth order polyno-
mial surface. An example of the surface fitting on a sub-
region of the honeybee eye is displayed in Fig. 1b.

Sub‑volume extraction and unfolding
The purpose of this process is to extract a sub-volume of 
the original data volume including the crystalline cone 
layer in each sub-region.

As the external sub-surface of the cornea is now mod-
elled as a polynomial function, it could be resampled to 
a matrix of points with a density that offers sufficient 
resolution and optimizes the computational time. Each 
sub-surface sample point was then paired with a unit 
direction vector that was defined as the surface normal at 
the sample point on the cornea and pointing towards the 
inside of the eye. By sampling along the unit vectors, we 
obtain a sub-volume aligned with the “flattened” cornea 
surface within a defined displacement along the cornea 
surface normal.

In order to extract the intensity of the query points, 
they are back-transformed to the original coordinate sys-
tem, and the image intensity is sampled from the data 
volume, using tricubic interpolation. Due to the step-
wise extraction of displaced cornea layers, the sub-vol-
ume is in some sense “unfolded”, as illustrated in Fig. 1c.

Texture based auto‑segmentation of the cones
In the unfolded sub-volumes, the crystalline cones should 
ideally appear as ‘cylinders’ aligned with the z-axis (the 
displacement layers), with a predictable repeated pattern 
of small circular structures. The segmentation of cones is 
thus simplified to a two-dimensional problem.

In this paper, we chose the texture-based segmenta-
tion tool InSegt [9]. To train InSegt, a user selected a 
single slice from the unfolded volume. This slice should 
be within the crystalline cone layer. The user provided a 
sparse manual annotation of this slice by marking some 
pixels as belonging to the background class, and some 
pixels as belonging to the cone class. The corresponding 
full segmentation of the slice is presented to the user for 
inspection, such that labelling continues until segmenta-
tion is satisfactory (cyan and magenta overlay in Fig. 1d, 
movie S1). Based on this input, a dictionary was trained 
and applied to all other slices in the unfolded sub-volume.

Back‑transformation
The labelled voxel coordinates were finally mapped back 
into the original coordinate system, using the transfor-
mation described in supplementary Equation  1. A label 
containing multiple raw segmented cones in the original 
3D image was thus obtained (Fig. 1e).

Post‑processing of the raw cones
The automatically segmented labels unavoidably contain 
pixels that are not cones. A post-processing is necessary 
to exclude noisy detections while keeping as many cor-
rectly segmented cones as possible (Fig. 1f ). In order to 
differentiate, the automatically segmented labels before 
post-processing are hereby called “raw cones”. The post-
processing was divided into three main steps: identifica-
tion of the individual raw cones, calculation of the raw 
cone characteristics, stepwise elimination of noisy detec-
tions (Fig. S2).

	 i.	 Identification of individual raw cones

	A connected component analysis in the original coordi-
nate system was performed to detect and individu-
ally label each raw cone (some of which are arte-
facts).

	 ii.	 Calculation of raw cone characteristics
	A PCA was performed on each raw cone to calculate 

its geometric properties and detect outliers. The 
coefficients, eigenvalues of the covariance matrix 
and estimated mean were used to calculate its 
elongation axis, length and radius, and cone cen-
tre, respectively. The sign of the elongation axis 
was chosen so that it points towards the surface of 
the cornea. The cone size was the number of vox-
els included in the raw cone volume. The distance 
to neighbouring cones was the average distance 
between the raw cone centre and the centres of the 
three closest neighbouring raw cones.

	iii.	 Stepwise elimination of noisy detections
	In this part, the cone characteristics were used to detect 

outliers in four consecutive sorting steps:

1.	 Raw cones with a cone size lower than ten vox-
els were immediately removed because they were 
likely to be noisy detections.

2.	 As in an earlier step (see Division into sub-
regions, local alignment and surface modelling), 
the coordinates of the cone centres were trans-
formed in the ‘PCA space’ given by the coeffi-
cients of a PCA of the cornea surface in each eye 
sub-region. A polynomial fitting (method poly55) 
was implemented on the normalised transformed 
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cone centres using the z-component as a depend-
ent variable. In each eye sub-region, the residu-
als of the polynomial fitting were used to cluster 
the cone candidates into one, two or three groups 
according to the gaussian mixture model (function 
fitgmdist) with the best Akaike Information Crite-
rion (AIC). The user then indicated through visual 
inspection which groups of raw cones appeared 
valid in each eye subregion. Invalid cones gener-
ally stick out from the clusters of valid cones that 
gradually follow the eye curvature, making visual 
inspection relatively fast (~ 2 min per specimen) 
and straightforward. Groups of raw cones that 
were not validated by the user were discarded in 
the following steps.

3.	 The coordinates of the remaining cone centres 
were transformed into the coordinate system 
now given by the coefficients of a PCA of the 
full cornea surface. Five polynomial (poly55) 
fittings were implemented in the (x, y) com-
ponents of the cone centres on the following 
dependent variables: normalised z-component of 
the cone centres, size, length, radius and distance 
to neighbouring cones. These variables were 
chosen for the detection of outliers because 
they are conserved in the true cones (expect 
from small topological variations) but stand 
out in the noisy detections. The detailed proce-
dure for the detection of outlier is provided in 
Text S1.

4.	 A final polynomial fitting (poly55) was imple-
mented on the cone centres of the remaining 
raw cones. A linkage was computed to deter-
mine the proximity of the fitted cone centres 
onto the polynomial surface. This linkage was 
used to define clusters of fitted cone centres 
that were closer than the cut-off distance. The 
cut-off distance was set by the user at 13 μm 
for all specimens because the average distance 
between ommatidia is approximately 20 μm in 
these specimens, such that two cones sepa-
rated by less than a cut-off distance are abnor-
mally close. In each cluster of fitted cone 
centres, the raw cone that had the largest fit-
ting residual was eliminated iteratively until 
the distance between all the fitted cone cen-
tres in the cluster was greater than the cut-off 
distance.

	 The raw cones that had not been disqualified 
throughout the four elimination steps were clas-
sified as valid cones.

Performance of the auto‑segmentation process
To assess the performance of InSegtCone, five metrics 
were calculated. The surface modelling error and angu-
lar discrepancy between automatic and manual seg-
mentation reflect the accuracy of the method (using 
manual segmentation as a reference), whereas the seg-
mentation time, percentage of auto-segmented cones 
and local cone density ratio of cones reflect the effi-
ciency of the method.

Surface modelling error
During surface modelling (see Division into sub-regions, 
local alignment and surface modelling), the surface mod-
elling error was calculated as the average of the root mean 
squared error (rmse) of the polynomial fittings of the sur-
face of the cornea across each of the eye sub-regions.

Segmentation time of the auto‑segmentation method
To evaluate the performance of the auto-segmentation 
method, the segmentation time of the process was 
estimated. The volumetric segmentation of the eye is 
probably the most time-consuming step of the analysis 
(2-4 h per specimen), but was not taken into account 
here because it is a prerequisite but not a part of the 
auto-segmentation of the cones. The segmentation time 
of the auto-segmentation process was thus approxi-
mately equal to the longest step – the texture-based 
auto-segmentation. When evaluating the texture-based 
segmentation duration, we considered only the cumu-
lated time spent by the user to manually annotate and 
train the segmentation model on each eye sub-region. 
The rest of the computing time for automatic segmen-
tation using the trained dictionary highly depends on 
the size of the image data and the computer power, 
therefore it is not discussed in detail here.

Percentage of auto‑segmented cones
This was the number of valid cones after post-process-
ing divided by the predicted number of ommatidia 
that was obtained using the method described in Tay-
lor et  al. [27]. In brief, manual measurements of facet 
diameters at about 30 locations across the eye were 
used to build an interpolant of facet area across the eye 
surface. The predicted number of ommatidia is thus 
the total area of the cornea surface estimated from an 
isosurface fit (function isosurface with isovalue = 0.5) 
divided by the average interpolated facet area.

Angular discrepancy between automatic and manual 
segmentation
The same cone can be segmented both manually in 
Amira and with the auto-segmentation method, thus 
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generating two cone duplicates. This was considered to 
be the case if the cone centre of an auto-segmented cone 
was less than a voxel away from a manually segmented 
cone. The angular discrepancy between automatic and 
manual segmentation was the angle α ∈ [0, π], between 
the elongation axes of the two cone duplicates.

Local cone density ratio
The local cone density ratio R ∈ [0, 1], represents the 
local coverage of the auto-segmentation method. A ratio 
equal to 1 indicates that all cones predicted locally were 
identified and segmented by the method. To calculate R, 
equidistant sampling points on the cornea surface were 

obtained as in Taylor et al. [27]. The local density ratio at 
each sampling point was the number of cones identified 
by the auto-segmentation method within a given range 
(100 μm) divided by the expected number of ommatidia 
in the same range. The latter was the local area of the cor-
nea subset divided by the local average facet area.

Results
When applied to compound eyes of Apis mellifera, 
Bombus terrestris and Pieris napi, InSegtCone enabled 
the automatic reconstruction of 4423, 3783 and 4334 
cones, corresponding to 80, 76 and 62% of the pre-
dicted total number of crystalline cones, respectively 

Fig. 2  Auto-segmented crystalline cones in the compound eyes of three arthropods. The eyes of Apis mellifera (ai), Bombus terrestris (aii) and Pieris 
napi (aiii) were divided respectively into 4, 12 and 9 subregions. Overview of the cones segmented with InSegtCone (each labelled with a different 
colour) from the front (bi-iii) and the side (ci-iii), as indicated by the volume renderings of the species’ heads (grey images). The border of the external 
surface of the cornea is represented in black. The miniature in each left corner indicates the topology of the cone density ratio. A ratio locally equal 
to one means that all expected cones were auto-segmented. (di-iii) Detailed view of a portion of the auto-segmented cones
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Fig. 3  Performance of the auto-segmentation method in Apis mellifera (green), Bombus terrestris (orange) and Pieris napi (purple). The 
surface modelling error (a), segmentation time (b), percentage of auto-segmented cones (c) and angular discrepancy between manual and 
auto-segmentation (d), are represented as a function of the number of eye subregions used in the segmentation algorithm. When drawn, error bars 
represent the standard error around the mean values
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(Figs.  2 and 3c, movies S2, S3 and S4). The cone den-
sity ratio R, i.e. the local ratio of auto-segmented over 
predicted cones, was close to 1 across most regions of 
the eyes of A. mellifera and B. terrestris, indicating that 
all the cones predicted in these areas were segmented 
(Fig.  2). The value of R dropped in the most dorsal 
region and at the edges of the eye, indicating that the 
cones that remained undetected were situated in these 
areas (representing ~ 20% of the total number of cones). 
The topography of R was more irregular in Pieris napi, 
revealing small areas where cones were not segmented, 
in the most dorsal and ventral regions and at the edges 
of the compound eye.

Once the segmentation of the eye and cornea (that 
requires most manual work) were completed, the seg-
mentation time of the automatic method was ~ 30 min 
for a total of ~ 4400 cones (Fig. 3b), whereas the dura-
tion of the manual segmentation was ~ 180 min for a 
total of 100 cones (Table S1). This means that the man-
ual method permitted the segmentation of one cone in 
about 2 min when the automatic method segmented 
one cone in less than 0.5 s. The automatic method is 
thus about 250 times faster than the manual one.

To test the effects of dividing the eye into sub-regions, 
the auto-segmentation process was applied to the com-
pound eye of A. mellifera when it had been divided into 
increasing numbers of sub-regions NSR. The aim of this 
test was also to identify the optimal NSR that trades off 
accuracy and efficiency. The percentage of segmented 
cones initially increased with increasing NSR (NSR∈ [1, 
4], Fig.  3c), until it reached a plateau and even slightly 
dropped (NSR∈ [4, 12], Fig. 3c). This initial gain highlights 
the benefits of dividing the eye into sub-regions, and was 
due to the segmentation of additional cones in the dorsal 
area of the compound eye (Fig. S3). This was likely facili-
tated by the initial decrease of the surface modelling error 
(Fig. 3a). The improved efficiency of the algorithm up to 
NSR = 4 did not increase the run-time of the auto-segmen-
tation process (Fig.  3b), although it may have caused a 
slight increase in the average angular discrepancy between 
the automatic and the manual segmentation (Fig. 3d).

The angular discrepancy α between automatic and 
manual segmentation, that is the angle between the 
elongation axes of the manually and the auto-segmented 
duplicates of the same cone, could locally be close to 
70 deg (Fig. S5). Note that this does not indicate that the 
auto-segmented cone is 70 deg off the elongation axis, as 
manual segmentation is also prone to errors. Moreover, 
α was on average below 7 deg for all eyes (Fig. 3d), which 
indicates a good agreement between the manual and the 
auto-segmentation methods overall.

Discussion
In this paper, we demonstrate InSegtCone, a new com-
putational method for automatically segmenting the 
crystalline cones of compound eyes in arthropods using 
high-resolution micro-CT images. We assessed the per-
formance of the method by implementing the auto-seg-
mentation process on the apposition compound eyes of 
three insect species. Our method labelled most of the 
crystalline cones across of the compound eyes and gen-
erated cone labels with a similar level of accuracy than 
manual segmentation but ~ 250 times faster. We con-
clude that this new method for auto-segmentation of 
crystalline cones is accurate and efficient. InSegtCone sets 
the ground for subsequent high-throughput analyses that 
are required for understanding the diversity of eyes and 
vision in arthropods.

Current limitations and possibilities for improvement
Because the present automatic procedure is ~ 250 times 
faster than manual labelling, it greatly facilitates the seg-
mentation of crystalline cones and minimises most of 
the labour-intensive manipulations usually required for 
such analyses. However, the method still requires some 
level of manual interaction with the user, in particular, 
during the segmentation of the external surface of the 
cornea and the texture-based segmentation that requires 
the annotation of crystalline cones on a 2D slice (if no 
existing dictionary from similar samples is available). 
There are thus opportunities for further automation of 
the segmentation process. We encourage future users 
to carefully consider the advantages of using the auto-
segmentation instead of a manual segmentation method. 
The automatic method is probably most beneficial when 
applied to numerous eye samples and/or species with 
many ommatidia (and thus many cones), such as the 
bees and butterfly presented in this paper that possess 
several thousands of ommatidia. Manual segmentation 
may be more advantageous for studies restricted to few 
specimens of arthropods with a small number (< 100) of 
ommatidia [26].

Our auto-segmentation tool uses clustering of image 
features and manual labelling from one slice to segment 
repeated patterns (here, in the form of small circles). It 
will perform well on images that have a similar appear-
ance as the image used for training the dictionary. 
However, micro-CT reconstructions sometimes gener-
ate artefacts (e.g. ring artefacts, beam hardening, etc.) 
that affect the appearance of the cones and can locally 
disrupt the auto-segmenting of cones. An example of 
this is indicated by the arrow in Fig. 1d where the algo-
rithm failed to segment the cones around the stripes 
caused by ring artefacts. Fortunately, micro-CT is a 
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non-destructive imaging method that allows repeated 
scanning on the same specimen with adjusted param-
eters to enhance image quality and limit artefacts. The 
image quality can also be improved during reconstruc-
tion with numerous post-processing tools, such as ring 
removal algorithms [29].

During the texture-based segmentation step, a train-
ing dictionary is built from the manual annotation of a 
training slice [9]. If the cross sections of the cones have 
a highly variable appearance across the slice, the use of 
a unique training dictionary common to all the cones is 
likely to lead to inaccurate or poor segmentation results. 
The variable appearance of cones across a training slice 
can have several explanations. For example, (1) if the 
thickness of the cornea significantly changes across the 
eye, the training slice will contain cones that appear dif-
ferent because they are viewed at different positions along 
their main elongation axes. This issue may be avoided by 
using a more robust reference for surface modelling, such 
as the internal, instead of the external, corneal surface, 
although this would require additional volumetric seg-
mentation efforts. Another solution is to divide the com-
pound eye into a higher number of sub-regions to ensure 
that the thickness of the cornea is homogeneous within 
each sub-region. (2) The cones themselves can have dis-
tinct morphologies in different regions. For instance, the 
cones located in the dorsal area of the bee eyes appear 
to be shorter and more densely packed than in the rest 
of the eye (Fig. 2). In this case, a sub-region dedicated to 
these challenging regions may be needed to improve seg-
mentation. (3) Auto-segmentation can be complicated if 
neighbouring crystalline cones are in contact with each 
other, such as in the case of crab compound eyes [1, 2]. 
In this case, the texture-based segmentation algorithm 
either fails, or the cones are segmented together in a bun-
dle of connected voxels and cannot be isolated without 
additional post-processing, e.g. morphological erosion 
and dilation techniques [10]. An alternative solution is to 
combine the texture-based segmentation with shape rec-
ognition algorithms, such as circle detection [10].

Current and future applications
Despite the limitations discussed above, InSegtCone rep-
resents a formidable opportunity for the study of the vis-
ual biology of arthropods. Because it greatly accelerates 
time-consuming labelling, this new tool enables com-
prehensive studies across a large number of arthropod 
eyes, which had been practically inaccessible until now. 
The auto-segmentation method also has a wide range of 
potential applications within and beyond the study of the 
anatomy of compound eyes. Firstly, (and possibly most 
obviously) the labels of the crystalline cones can serve to 
generate unbiased functional optical models of the eyes. 

This is because, without analysis of the crystalline cones, 
optical models must be based on the apparent angular 
spacing of facets on the external surface of the cornea, 
the corneal IO angle, which produces biased estimates of 
optical resolution and of the field of view (FOV) of the 
eye [5, 27]. The auto-segmented labels can be used to 
estimate the skew β that is the angle between the normals 
to the external cornea and the main elongation axes of 
the crystalline cones across the compound eye [25]. The 
cone skew β is then necessary to compute the visual IO 
angle – an unbiased parameter that best reflects the ana-
tomical limit of optical resolution (ultimately determined 
by the acceptance angle [8]) – that can be mapped across 
the accurately delineated FOV of the eye. Ultimately, the 
fast auto-segmentation method makes it possible to com-
pare these accurate resolution maps across large numbers 
of specimens with different sizes, life-stages, sex, species, 
etc. This is likely to advance our understanding about 
the visual ecology and evolution of vision in arthropods 
[2, 21, 24, 27]. The auto-segmentation method not only 
extracts the elongation axis of the crystalline cones but 
also their full shape. This is interesting because several 
arthropod species modify the length [7, 15, 16] and the 
diameter [7] of their crystalline cones in response to 
changes in light levels. In fiddler crabs, these light-adap-
tation mechanisms together with modifications of the 
rhabdoms enhance optical sensitivity at night [7]. The 
auto-segmentation method generates opportunities for 
large scale investigation of these light-adaptation proper-
ties at numerous light levels and across large numbers of 
species.

Applying the auto-segmentation method to other 
parts of the eyes could facilitate the labelling of other 
elements in the compound eyes. For instance, the cen-
tre of individual facets could be identified automatically 
by running the program superficially over the external 
surface of the cornea. This technique would promptly 
generate 3D maps of facet dimensions across the eye 
and thus good estimates of the total number of omma-
tidia. The program could be adapted to extract mor-
phological properties of the rhabdoms when they are 
visible, i.e. when the resolution and contrast of micro-
CT images are sufficient. This would represent a great 
benefit given that current studies of rhabdom morphol-
ogy require tedious sample preparation and slicing for 
Transmission Electron Microscopy. A modified ver-
sion of the auto-segmentation method could be used 
to measure the diameter of rhabdom, either by using 
the proximal tip of the segmented crystalline cone, or 
directly by segmenting the rhabdom shape. Besides 
being more accurate, the latter method would have 
the additional advantage of extracting other proper-
ties, such as the length of the rhabdoms. To segment 
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rhabdoms, we expect better results using the retina-
cone interface as a reference during the surface model-
ling step, rather than the external surface of the cornea. 
With these measurements of rhabdom diameters and 
lengths, scientists would be able to calculate the topol-
ogy of optical sensitivity with unprecedent level of 
detail across the eye.

Finally, InSegtCone could solve segmentation prob-
lems beyond the study of compound eyes. In micro-
CT scans of camera-type eyes, such as ocelli [30], this 
represents a promising tool for fast reconstruction of 
the shape of photoreceptors across the retina. In prin-
ciple, our method can be extended to label photorecep-
tors on any tomographic reconstruction of vertebrate 
or invertebrate retina, regardless of the imaging tech-
nique involved to generate data (micro-CT, confocal 
microscopy, etc). More generally, this work can inspire 
projects in a wide range of fields that require tools to 
segment repeated elements in a 3D layer. In Biology, 
these repeated elements are for example: muscle fibres, 
olfactory sensilla on antennas, epidermal appendages 
such as scales, vascular tissue and roots of plants. The 
first part of the process involving the modelling of 
the external cornea may also inspire other studies to 
achieve better visualization or easier quantitative anal-
ysis through the unfolding of 3D images.
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