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Abstract 

Background:  Modification and destruction of natural habitats are bringing previously unencountered animal 
populations into contact with humans, with bats considered important zoonotic transmission vectors. Caves and 
cave-dwelling bats are under-represented in conservation plans. In South Africa, at least two cavernicolous species 
are of interest as potential zoonotic hosts: the Natal long-fingered bat Miniopterus natalensis and the Egyptian fruit 
bat Rousettus aegyptiacus. Little information is available about the anthropogenic pressures these species face around 
important roost sites. Both bats are numerous and widespread throughout the country; land-use changes and urban 
expansions are a rising concern for both conservation and increased bat-human contact.

Results:  Our study addressed this shortfall by determining the extent of land-cover change around 47 roosts 
between 2014 and 2018 using existing land cover datasets. We determined the land-cover composition around 
important roost sites (including maternity, hibernacula and co-roosts), distances to urban settlements and assessed 
the current protection levels of roost localities. We detected an overall 4% decrease in natural woody vegetation 
(trees) within 5 km buffer zones of all roost sites, with a 10% decrease detected at co-roost sites alone. Agricultural 
land cover increased the most near roost sites, followed by plantations and urban land-cover. Overall, roosts were 
located 4.15 ± 0.91 km from urban settlements in 2018, the distances decreasing as urban areas expand. According 
to the South African National Biodiversity Institute Ecosystem Threat Status assessment, 72% of roosts fall outside of 
well-protected ecosystems.

Conclusions:  The current lack of regulatory protection of cavernicolous bats and their roosts, increasing anthropo-
genic expansions and proximity to human settlements raises concerns about increased human-bat contact. Fur-
thermore, uncontrolled roost visitation and vandalism are increasing, contributing to bat health risks and population 
declines, though the extent of roosts affected is yet to be quantified. In an era where pandemics are predicted to 
become more frequent and severe due to land-use change, our research is an urgent call for the formal protection of 
bat-inhabited caves to safeguard both bats and humans.
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Background
Globally, caves and other underground openings are 
vital to the survival of numerous bat (Order Chirop-
tera) species [9, 21, 52]. Cavernicolous bats are gener-
ally colonial and their populations are concentrated in a 
limited number of large colonies [17, 70]. These bats are 
typically central-place foragers which concentrate their 
feeding activities within a relatively small area around 
the roost site [70]. However, some species may range 
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widely to forage and to reach other roost sites [22] and 
are therefore sensitive to broader landscape alterations 
[40]. Threats impacting caves, as well as the foraging area 
around the roost, make an entire population vulnerable 
to habitat destruction across a broader scale [69]. Despite 
this, various caves worldwide are not afforded protec-
tion and face threats such as vandalism, pollution, ille-
gal mining and land-cover change [54, 81]. Research has 
suggested that various bat species, especially those with 
specific habitat and roosting requirements [39, 74], like 
cavernicolous bats, are negatively affected by anthropo-
genically-induced landscape changes [4, 15, 35, 42, 43]. 
Most bat species are particularly sensitive to the loss of 
natural woody vegetation [6], land-cover types which are 
vulnerable to land-use change and fragmentation [43, 
47].

South Africa has one of the fastest urbanisation rates 
worldwide and the demand for resources is increasing 
[75], leading to negative impacts on the natural landscape 
and bringing humans and livestock into closer contact 
with wildlife. The key activities driving habitat loss are 
land clearing for agriculture, expanding human settle-
ments, intensifying plantation forestry and mining and 
infrastructure development, jointly resulting in a 21% loss 
of South Africa’s natural terrestrial ecosystems [80]. Hab-
itat loss is concerning at both a local and a global scale, 
given that the ongoing modification and destruction of 
natural habitat and the intensification of anthropogenic 
land use is bringing previously wild animal populations 
into closer contact with humans than ever before [37]. 
Notably, changes in land cover are strongly linked to the 
increasing emergence of zoonoses worldwide [2], with 
bats acknowledged as one of the prevalent host species 
for a variety of viruses [32, 44, 51]. To prevent zoonotic 
spillover, a variety of ecological interventions (e.g., reduc-
ing contact rates between humans and wildlife) can be 
applied to break the chain of transmission [66]. These 
ecological approaches necessitate a better understand-
ing of various behavioural, physiological and ecological 
aspects of the host population for interventions to be 
successful [82].

South Africa has a rich assemblage of karst caves and 
other underground openings, however, much of the cur-
rent focus falls primarily on their archaeological and 
palaeontological significance [50, 89]. Currently, 22% 
of 458 ecosystem types in South Africa are classified as 
threatened [80] and whilst caves may fall within some of 
these zones, they have not yet been directly assessed as 
important ecosystems, nor incorporated into active man-
agement or conservation plans at a national level that we 
know of. At least 18% of South Africa’s 60 reported bat 
species are either fully or partially dependent on caves 
[46, 61]. Of the cave-dependent species, the Natal-long 

fingered bat Miniopterus natalensis and the Egyptian 
Rousette bat Rousettus aegyptiacus are likely the most 
numerous and widespread [61]. Both M. natalensis and 
R. aegyptiacus distributions appear to be influenced 
more by the presence of suitable cave roosting sites than 
broader habitat or climatic associations ([8]; Schoeman 
et  al., 2013). Karst areas (caves/limestone) presented a 
strong predictive variable in modelled bat species dis-
tributions in southern Africa at both a broad [16] and 
regional [58] scale, highlighting the importance of these 
landscape features for obligate cave-dwelling species 
like M. natalensis and R. aegyptiacus [61]. Currently, out 
of the known and reported 93 cave localities with bats, 
there are only 15 caves with verifiable records of resi-
dent bats (and 9 confirmed M. natalensis roosts) which 
are currently located within protected areas [67]. The 
remainder of caves is located outside formally protected 
areas and vulnerable to land-cover changes and other 
human impacts and disturbances.

Both M. natalensis and R. aegyptiacus are species of 
interest as transmission hosts for potential zoonotic 
viruses [51], specifically, various potentially zoonotic 
coronaviruses [30, 31]. The two bat species are charac-
terised by large population sizes and may often be found 
co-roosting, which increases the chance of cross-species 
viral sharing and infection [20, 61]. The viral host status 
and the abundance of M. natalensis and R. aegyptia-
cus throughout South Africa raises concerns about an 
increased chance for contact with humans and livestock. 
Concurrently, the lack of formal protection for these bats 
and their obligate roost environment is worrisome for 
continued cave-dwelling bat survival. This necessitates an 
understanding of the type and degree of current anthro-
pogenic pressures around known roost sites for these 
bat species; important both for conservation actions and 
timely ecological interventions for future zoonotic spillo-
ver prevention. Therefore, this study aimed to determine 
the extent of land-cover change around roosts for M. 
natalensis and R. aegyptiacus in South Africa. Specific 
focus was placed on: 1) determining the extent of land-
cover change around roosts with particular focus on the 
extent of change to intact natural woody vegetation and 
anthropogenic land-use categories such as agriculture 
and urbanisation, 2) highlight specific roost site types 
with the greatest proportions of land cover change and 
lastly, 3) assess the current ecosystem protection level 
and threat status of known roost localities.

Results
Within the 5 km buffer zones for all 47 reported roost 
localities, natural woody vegetation decreased by 
4.26% from 2014 to 2018 (Fig.  1). For the anthropo-
genic land-cover categories, agriculture showed the 
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biggest overall percentage increase, followed by urban 
land cover and plantations. For the four specific roost 
types (hibernacula, roost, maternity and co-roosts), 
natural woody vegetation declined at all four site types 
but the biggest decline was observed at the co-roost 
sites (Fig.  2). Urban land-cover increased at all roost 
site types but also increased the most at the co-roost 
localities. From 2014 to 2018, the majority of natural 
woody vegetation loss (~ 34%) resulted from a conver-
sion to the ‘other vegetation’ land cover category, whilst 

~ 4% transitioned to urban and agricultural land cover 
types respectively (Fig. 3). In 2018, the average distance 
(± SE) for all roosts to the nearest urban settlements 
were 4.15 ± 0.91 km. This was an average decrease of 
0.17 km from 2014 (4.32 ± 0.92 km), although this dif-
ference was not statistically significant (W = 1137, 
p-value = 0.91). The distance between urban settle-
ments and roosts decreased at more than half of the 
roost sites (n = 24), with settlements being closer to 
two roosts by 3 km and 5 km respectively. Hibernacula 

Fig. 1  Roosts for Miniopterus natalensis (open circles) and Rousettus aegyptiacus (black circles) throughout South Africa. Important sites (maternity 
and wintering roosts) for Miniopterus natalensis are indicated in yellow and blue respectively. Locations where both species roost together are 
indicated by black stars (Co-roosts)

Fig. 2  Land-cover change (as a percentage of the total area) between 2014 (in grey) and 2018 (in black) in eight land cover classes within all 5km 
buffer zones of 47 M. natalensis and R. aegyptiacus roost localities throughout South Africa. Results show the area of each land cover category (in 
%), values next to bars show the percentage change between 2014 and 2018, negative values are shown in red



Page 4 of 12Pretorius et al. BMC Zoology            (2021) 6:31 

roosts were located the furthest from urban settle-
ments (8.84 ± 1.27 km), whilst maternity roosts were 
located the closest (3.43 ± 0.42 km), with distances of 
all roosts to urban settlements showing a decreasing, 
although also not statistically significant, trend from 
2014 to 2018 (Fig. 4). Seventy-two percent (72%) of all 
the roost types (n = 34) fell within ecosystems that were 
not protected, poorly protected or moderately pro-
tected according to the SANBI 2018 ecosystem protect 
level assessment, with only 13 roost sites (27%) located 
within well-protected ecosystems (Fig.  5). The roosts 
located in well-protected ecosystems included seven 
roost sites, four maternity sites and two co-roosts.

Discussion
Land cover around bat-inhabited caves in South Africa 
has changed and is continuing to change. Within 5 km 
of known M. natalensis and R. aegyptiacus cave roosts 
throughout the country, agriculture, plantations and 
urban settlements have increased. Simultaneously, nat-
ural woody vegetation has declined around all roosts 
from 2014 to 2018. The majority of change detected for 
this land-cover type was a conversion to the ‘other veg-
etation’ category (e.g., to shrubby vegetation or grasses), 
with conversion to urban and agricultural land-cover 
being second highest. Trees are a vital component of 
rural livelihoods throughout South Africa and are har-
vested for fuelwood and medicine (e.g., medicinal bark) 
[77, 90]. Current wood harvesting rates in South Africa 

are unsustainable, with the majority of trees lost within 
1.5 km of human settlements [92]. This shifts the veg-
etation clutter characteristics and dominant vegetation 
types to shrubby vegetation (< 2 m canopy height) [7, 56], 
supporting our observations that 34% of natural woody 
cover around bat roosts shifted to the ‘other vegetation’ 
category. Trees and tree lines are important to various 
bat species for foraging and for commuting between 
sites [25, 45, 55]. The loss of trees also leads to habitat 
fragmentation, a reduction of bat foraging activity and 
changes the species composition [24]. Woody vegeta-
tion edges are important for clutter-edge foragers, like M. 
natalensis [36] and are likely important linear elements 
along their migratory routes [67].

Natural woody vegetation loss, and the subsequent 
loss of food resources (insects [27] and flowers and fruits 
[12], makes agricultural areas attractive alternatives to 
insectivorous bats, including M. natalensis [86, 91] and 
frugivorous bats [14]. In particular, R. aegyptiacus are 
attracted to agricultural areas due to the increased avail-
ability of fruit crops [13]. The prevalence and extent of 
crop-feeding by R. aegyptiacus bats in South Africa is yet 
to be assessed [5]. However, the increase in the agricul-
tural land-cover class around cave roost sites from 2014 
necessitates future investigation. This is especially impor-
tant in terms of potential bat-human contact in orchards 
[23, 53], as well as the damaging long-term impacts on 
bat health and survival due to pesticide exposure [1, 11, 
18, 19].

Fig. 3  Land-cover change (in percentage) between 2014 and 2018 in three antrhopogenic land cover classes (Agriculture, Plantations and Urban) 
and Natural woody vegetation (trees) for the four specific roost site types of Miniopterus natalensis (maternity, wintering, roost) and Rousettus 
aegyptiacus (roost, Co-roost). The number of roosts for each category are shown in parentheses. Loss is shown by negative percentage change
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Urban land cover increased at all four roost site types, 
with the most change observed at M. natalensis and R. 
aegyptiacus co-roost sites. Similarly, expanding urban 
settlements are getting increasingly closer to more than 
half of the bat-inhabited caves in South Africa. Urbani-
sation is one of the greatest threats facing bat popula-
tions worldwide [28, 43]. Urban expansion is predicted to 

cover 1.2 million km2 by 2030, with the greatest expan-
sion predicted to occur in biodiverse tropical areas, 
including Africa [76]. Notably, human populations in 
major cities in South Africa are projected to increase 
by as much as 23% by 2030 [62]. Urbanisation generally 
impacts bat populations negatively through habitat loss, 
artificial lights (through insect prey loss and commuting 

Fig. 4  Transition matrix of land cover change for 8 land cover categories around Miniopterus natalensis and Rousettus aegyptiacus roosts 
throughout South Africa from 2014 to 2018. Higher levels of change is shown on a sliding scale from yellow (>40%) to red (>80%), lower levels of 
change is shown on a sliding scale from green (> 39%) to blue (> 1%)

Fig. 5  Distance (km) of roost site types for Miniopterus natalensis (Maternity, Wintering, Roost) and Rousettus aegyptiacus (Roost, Co-roost) to the 
nearest urban settlements in 2014 (light grey) and 2018 (dark grey) throughout South Africa
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disruption) and vehicle collisions on major roads [10, 
49, 72]. Both M. natalensis and R. aegyptiacus appear to 
be adaptable foragers in urban settings [8, 79], yet little 
evidence is available as to how these species respond to 
areas that have recently undergone land-use transforma-
tion. However, their obligate cave-dwelling natures [61] 
indicates that their cave roosts sites are critical to their 
continued survival [16, 58]. Safeguarding co-roosts and 
maternity roosts may be especially crucial, where repro-
ductive pressures are energetically costly for M. natalen-
sis [68], weaken the immune systems of R. aegyptiacus 
during pup weaning periods (Geldenhuys et al., in prep) 
and where co-roosting may facilitate inter-species infec-
tion [20, 51]. At these sites, bat health and survival may 
be generally compromised and could be exacerbated by 
human interference.

The majority of cave roosts in this study did not fall 
within “well-protected” ecosystems [83]. The current lack 
of regulatory protection for cavernicolous bats and their 
roosts [59] is leaving South African caves increasingly 
vulnerable to disturbance and vandalism [34] and these 
behaviours will increase as more humans live in closer 
proximity to caves. To enter caves, CPF6 permits from 
the South African Department of Agriculture And Rural 
Development are required under the Nature Conserva-
tion Ordinance 12 of 1983, Section 9. Vandals are subject 
to a fine not exceeding ZAR1,500 (approximately $100) 
or to imprisonment for a period not exceeding 18 months 
. However, little evidence exists about the enforcement of 
this rule. Whilst some caves may be considered culturally 
important under the South African National Heritage 
Resources Act [No. 25 of 1999], the majority of caves are 
not reported to be culturally significant and are therefore 
not included under this act [71]. Increased uncontrolled 
visitation, graffiti, trampling and cave destruction has led 
to a visible reduction in the size of R. aegyptiacus colo-
nies at a cave roost in the Western Cape Province, with 
many dead bats observed by researchers throughout the 
cave [26], even though this cave is located in a protected 
area. Roosts within protected areas do not automatically 
guarantee effective conservation protection (as seen with 
other habitats, see [63]) and cave-specific conservation 
and protection actions are essential. There is also a need 
to determine the extent of roost disturbance and destruc-
tion for the roost sites mentioned in this study. Though 
the preservation of natural woody vegetation and for-
ested habitat is also important, the protection of karsts as 
point resources for cavernicolous bats is essential to the 
bats’ survival [85] and other cave associated biota.

Anthropogenic activities that cause losses in wildlife 
habitat quantity and quality increase the opportunities 
for animal-human interactions and facilitate zoonotic 
disease transmission [38]. The destruction, disturbance 

and damage of roosts are some of the main factors affect-
ing bat population decline worldwide [29]. Natural habi-
tat loss, along with human intrusion at roost sites, will 
likely lead to more frequent human-bat encounters if no 
steps are taken to formally safeguard cave roost sites in 
South Africa. This is especially crucial as the worldwide 
encroachment of growing human populations into wild-
life habitats, along with an increase in agriculture and 
livestock density in areas adjacent to fragmented forests, 
increases the risk of zoonotic virus transmission from 
bats to humans [73]. Bats, along with domesticated spe-
cies, primates and rodents, are a large and diverse order 
that host a variety of viruses with zoonotic potential [38, 
57], with several bat species (including M. natalensis and 
R. aegyptiacus) in South Africa earmarked for ongoing 
monitoring for potentially zoonotic viruses [30, 31, 51]. 
Our research has highlighted important roost locali-
ties for M. natalensis and R. aegyptiacus that are under 
pressure from land-cover changes, particularly increas-
ing urbanisation and agricultural activities and the loss 
of trees. These cave roosts need to be prioritised for 
future research efforts and conservation actions, particu-
larly given the proximity of some of these sites to human 
settlements.

Conclusions
Our study of land cover change around bat-inhabited 
caves throughout South Africa showed that human 
impacts are increasing around important bat roost sites; 
trees have decreased, whilst agriculture and urban settle-
ments have increased. Distances have decreased between 
settlements and bat roosts. Because many roosts are 
not located in well-protected ecosystems and no formal 
cave-conservation plans currently exist, important bat 
roost sites are at risk of human interference and destruc-
tion and the likelihood of bat-human contact throughout 
South Africa is increasing. These developments are con-
cerning for both human health and continued bat sur-
vival and cave-specific conservation is urgently required.

Methods
We used the cave roost dataset compiled by Preto-
rius et  al. [67], which include 37 M. natalensis-specific 
roosts localities. We expanded this dataset to include 10 
R. aegyptiacus roost locations and also searched for lit-
erature/information mentioning M. natalensis and R. 
aegyptiacus in the same roosts (hereafter co-roosts). 
Roosts were classified as hibernacula roosts (confirmed 
M. natalensis presence April–July, n = 3) and mater-
nity (confirmed M. natalensis presence October–Janu-
ary, n = 10) or simply as ‘roost’ if the importance of the 
site could not be confirmed [67]. Rousettus aegyptiacus 
roost importance could not be confirmed from literature 
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(except for co-roosts, n = 4), therefore locality catego-
ries were pooled with the M. natalensis roost category 
(n = 32). The dataset used in our analyses comprised 47 
confirmed M. natalensis and R. aegyptiacus roost locali-
ties across South Africa (Fig. 6.). See the supplementary 
material (Table S1) for details about roosts and their 
related citations. Roost localities were mapped using 
ArcMap (ArcGIS for Desktop Version 10.5, ESRI Devel-
opment Team). The home range size of M. natalensis 
and R. aegyptiacus are still currently unknown, therefore 
a 5 km buffer zone was created around each roost and 
encompasses an average home range for at least two Afri-
can bat species (see [60, 64]).

South African land-cover datasets for 2014 and 2018 
were downloaded from the South African Department of 
Environmental Affairs (DEA) Environment Geographic 
Information Systems (EGIS) website (https://​egis.​envir​
onment.​gov.​za/​data_​egis/​data_​downl​oad/​curre​nt). These 
maps have been created specifically to aid scientific 
research, environmental planning and protection, eco-
nomic development, compliance monitoring, enforce-
ment and strategic decision making by providing open 
access, standardised and comparable reference maps 
from which landscape changes can be determined and 
quantified [88]. The 2014 dataset is generated from Land-
sat 8 imagery acquired from dates spanning 2013–2014 
based on 30-m raster cells. The 2018 map represents an 
updated land cover map currently available for South 
Africa and is compiled of multi-seasonal 20-m resolu-
tion Sentinel 2 satellite imagery [88]. Similar land-cover 
categories were concatenated to create eight land cover 

classes for both 2014 and 2018 (see Table 1). These eight 
land-cover classes for both dates were then exported 
from each 5 km buffer zone for each cave to Microsoft 
Excel.

Using post-classification methods such as those used 
by Hardin et  al. [33], we calculated the overall area of 
land-cover/ total area detected within the 5 km buffer 
zones of all roosts based on the ‘count’ column of both 
the 2014 and 2018 datasets. To account for the differ-
ences in remote sensing technologies (i.e. different num-
ber of total sensed pixels) between the two time periods, 
we compared the differences between percentages of land 
cover change instead of the area of land-cover change. 
We also specifically investigated the percentage land 
cover change around the four different roost types (hiber-
nacula, roost, maternity and co-roost) for the top three 
anthropogenic land cover types (agriculture, plantations 
and urban land cover) as well as natural woody vegeta-
tion. A land-use transition matrix was created using the 
overlay functions in ArcGIS system toolbox (see Zhang 
et al. [96] to represent changes for the land-cover classes 
around the roosts from 2014 to 2018.

The matrix gives a quantitative description of the 
current system state and state transition, providing 
detailed “from-to” change class information [87, 96]. 
The distances between roosts and the nearest urban 
settlements between 2014 and 2018 were tested for 
normality and because the data were not parametrically 
distributed, we statistically compared the distances 
using a two-sample Wilcoxon rank-sum test. Lastly, as 
an additional measure of threat levels to roost sites, we 

Fig. 6  South African National Biodiversity Institute’s five 2018 National Biodiversity Ecosystem Protection Levels (Skowno et al., 2019) for ecosystems 
where roosts of Miniopterus natalensis and Rousettus aegyptiacus were located. Ecosystems where roosts were located are categorised as not 
protected (NP, in red), poorly protected (PP, in orange), moderately protected (MP, in yellow) or well protected (WP, in blue). No roosts were detected 
in hardly protected (HP) ecosystems

https://egis.environment.gov.za/data_egis/data_download/current
https://egis.environment.gov.za/data_egis/data_download/current
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compared roost localities with the [83] National Biodi-
versity Assessment and Ecosystem Threat Status (NBA-
ETS) map (obtained from Biodiversity Geographic 
Information System website (http://​bgis.​sanbi.​org/​Spati​
alDat​aset/​Detail/​2675). Ecosystem types in this dataset 
are classified according to protection level; not pro-
tected (NP), poorly protected (PP), hardly protected 
(HP), moderately protected (MP) and well protected 
(WP) [80]. These classifications are based on the pro-
portion of each ecosystem type that remains in a good 
ecological condition relative to a series of thresholds, 
using the South African vegetation map, national forest 
types or high irreplaceability forest patches [80].

Statistical analyses and graphing (using the package 
ggplot2 [93]) were performed in R (R Core Team 2017) 
in RStudio Desktop Software Version 1.1.463.
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